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Construction of Space Filling Designs in high dimensional space remains difficult since powerful algorithms at
low dimensions become difficult to use at higher dimensions that leads to non-uniform distribution in the factor
space. We propose in this paper two approaches in order to repair designs: Curvilinear Component Analysis
(CCA) and the Wootton, Sergent, Phan-Tan-Luu's algorithm called WSP in order to detect clusters and to fill
gaps. Thus, CCA allows visualization of two or more very closely-spaced points in D dimensions by projecting
them in a 2 dimensions space. Then identified clusters can be eliminated using the WSP algorithm. Moreover,
the presence of gaps in input space could be very problematic since no information on the phenomenon is avail-
able and theWSP algorithmwill be used in order tofill gaps by adding points in the “empty” zones. A new quality
criterion has been proposed in order to follow the reparation steps. Examples in different dimensions are pre-
sented to illustrate these methods.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In many fields, such as petrochemistry, astronomy, and meteorolo-
gy, highly complex simulated models are commonly used to represent
real phenomena as accurately as possible based on calculation codes.
Despite real advances in processor performance, the codes simulating
these phenomena still require considerable calculation times. Indeed,
increasingly realistic calculations involve a large number of input vari-
ables, whose effects can be difficult to predict. It is therefore necessary
to develop a strategy to determine the relevant information to supply
when producing the model, such as ranking the input variables by
order of importance, or having an idea of what the overall phenomenon
modeled should look like. This strategy should be as effective as possible
and should guarantee good quality information, even at high dimen-
sions. Experimental designs can be used to better organize numerical
simulations for this type of approach, and are currently used. However,
the number of input variables – often very large (several tens, or even
hundreds) – and thewide ranges of variation involved have led to stan-
dard experimental designs no longer being really appropriate. This is
partly due to how they distribute points (simulations), mainly placing
them at the extremities of the variables space. This is why, in numerical
simulation, experimental designs known as Space Filling Designs (SFD)
[1–3], or uniform designs, have becomemore popular as they distribute
the points uniformly throughout the input variables space. However,

not all SFD designs are equivalent in terms of the quality criteria re-
flecting the uniformity of point distribution, such as the intrinsic criteria
Mindist [4–6] and Coverage [7]. Mindist is defined as the smallest
Euclidian distance between two points. Coverage quantifies the homo-
geneity of spread of points and can be considered as a standard devia-
tion of minimal distances. These criteria allow the comparison of
several designs built in the same dimension with the same number of
points. The design with the better quality regarding the uniform repar-
tition and the fill-up of the space is characterized by the lowest value of
Coverage and the highest value of Mindist.

In addition, many algorithmswhich are powerful at low dimensions
(D b 10) become difficult to use at higher dimensions (D N 20 or 30).
Thus, low-discrepancy sequences [8–12], such as Faure sequences,
present very poor uniformity criteria at high dimensions, with low
Mindist and high Coverage values. The poor conditioning of these exper-
imental designs leads to non-uniform distribution of points throughout
the space, causing the appearance of clusters and/or gaps.

Poor conditioning, in terms of non-uniform distribution, can also re-
sult from a projection of an experimental design into the sub-space of
influential variables revealed by sensitivity analysis. Indeed, after sensi-
tivity analysis, it can be useful to extract the sub-group of factors identi-
fied as influential for closer study (modeling) of the phenomenon. This
involves keeping the previously performed tests (lines of the design)
and only considering the columns representing influential factors. This
reduction of the space is known as “folding” and can lead to the appear-
ance of clusters or gaps in the new space.

The aim of this study was to develop a method to repair designs
where points are not uniformly distributed throughout the factor
space, either because of poor construction or due to folding of the initial
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space. To do this, we used Curvilinear Component Analysis (CCA) [13,
14] to visualize clusters. Then designs were repaired using theWooton,
Sergent, Phan-Tan-Luu's selection algorithm (WSP) [15–20] to elimi-
nate any clusters identified and to fill gaps, which strongly penalize
the modeling steps. Examples of applications with 2, 8 and 20 dimen-
sions are presented to illustrate these methods.

2. Methods

Themethods presented heremeet the two objectives presented, i.e.,
detect the presence of clusters of points in the experimental space and
eliminate these clusters if necessary while also filling any gaps. We
will present the principles and algorithms for these methods followed
by examples of their application.

2.1. WSP algorithm

2.1.1. Algorithm
The WSP algorithm [15–20] allows uniform designs to be rapidly

constructed with very good quality criteria, like Mindist and Coverage.
In the WSP selection algorithm, the defined multidimensional parame-
ter space is filled with points selected from a set of candidate points
based on a preset minimal distance (dmin) from every other point al-
ready included in the design.

The algorithm can be summarized as follows:

Step 1 generate a set of N candidate points
Step 2 calculate the distances (Dij) matrix for the N points
Step 3 choose an initial point O and a distance dmin

Step 4 eliminate the points I for which: DOI b dmin. Point O is eliminated
from the set of candidate points and will belong to the final
subset

Step 5 point O is replaced by the nearest point among the remaining
points

Step 6 repeat steps 4 and 5 until there are no more points to choose.

A previous studyhas shown [18] that the type of the initial candidate
design (such as a random design, Latin Hypercubes [21–26], low dis-
crepancy sequences [8–12] and Strauss design [27]) has no importance
but only if the number of points is sufficient. The number of candidate
points depends on the number of required points in the final design.
Santiago et al. [18] advise to consider a number of candidate points
equal to at least 5 to 10 times the final set.

Usually the initial point O is chosen as the nearest point of the center
of variable space. However, if the candidate design contains a large
number of points, whatever the initial point results are identical.

The number of points in thefinal subset depends on the value of dmin.
If the dmin value increases then the number of points in the final subset
decreases. The dmin value is determined by iteration until the number of
points desired in the final subset is obtained.

Since previous studies [18] have shown that the WSP algorithm
leads to uniform designs with good criteria (Mindist and Coverage) we
have chosen to consider this design as presented below.

2.1.2. Reference design
We propose to use a reference design to compare the quality of any

designs that could present clusters of points or gaps.
A reference design is constructed with the same dimension and

the same number of points to the design to be assessed. The intrinsic
uniformity criteria for this design are calculated, and the dmin value
(equal to the Mindist criterion) is used to determine the shortest dis-
tance between two points. We then consider that two points separated
by a distance shorter than the dmin value are closer andwill form a clus-
ter. If all the points are separated by this dmin value, then the spread of
points is uniform.

2.1.3. Using the WSP algorithm to detect clusters
Cluster elimination consists in the suppression of points which are

closely-spaced in the variable space. It appeared logical to use the
WSP selection algorithm for this since this algorithm is based on calcu-
lation of distances. The difficulty lies in choosing the dmin value which
will determine the distance from which a cluster is defined. The dmin

value will be chosen according to the intrinsic uniformity criteria of a
reference design constructed from the same conditions in number of
points and dimensions. The Mindist is the smallest distance between
two points and if we assign this value to the dmin then two points sepa-
rated by a shorter distance than dmin are considered as close and will
form a cluster.

2.1.4. Using the WSP algorithm to fill gaps
The absence of points in some zones of the space can be problematic

as it indicates that no information on the phenomenon is available in
this part of the space. The WSP algorithm can be used to fill these
gaps. However, this algorithm, which constructs uniform experimental
designs, is a selection algorithm retaining a set of points from a set of
candidate points. It therefore cannot be used to add points. To overcome
this, we concatenated two experimental designs: the one with gaps
made up of “protected” points, and a second design containing a very
large number of candidate points. The WSP algorithm can then be ap-
plied (with a value of dmin calculated from the Mindist criterion of the
reference design) to select points from the sum of these two designs,
progressively filling the gaps while retaining the protected points.

2.2. Curvilinear Component Analysis (CCA)

2.2.1. Algorithm
The aim of CCA [13,14] is to reproduce the topology of an initial

space of dimension D in a smaller space of dimension p onto which
we wish to project all the data. As the overall topology cannot be
reproduced, CCA tries to conserve the local topology. To do this, we
consider N neurons for which the input vectors {xi; i = 1, …, N} in D
dimensions quantify the input distribution, and for which the output
vectors {yi; i = 1, …, N} in p dimensions (where p b D) should copy
the topology of xi (Fig. 1). To do this, we use the distances between
the xi: Xij = d(xi, xj) where d is the Euclidean distance, and the corre-
sponding output distances are: Yij = d(yi, yj).

During projection, the objective is to make the Yij distances equiva-
lent to the Xij distances. To do this, we minimize the ECCA criterion
(Eq. (1)) characterizing the topological differences between the initial
space and the projected space.

ECCA ¼ 1
2
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with Fλ(Yij) :ℝ+ → [0, 1] a monotone decreasing function of Yij. This fa-
vors local conservation of topology. The Fλ (Yij) function is known as the
weighting function or function of cost. Demartines and Hérault (1997)
[14] first suggested taking function F with parameter λ, known as the
critical distance or the neighborhood radius (Fig. 2).

The gradient descent (Eq. (2)) could be used to minimize the ECCA
criterion:
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with α is the adaptation factor.
However this adaptation rule suffers of several drawbacks. Only one

neuron is adapted at a time; thus the adaptation of all neurons is heavy
and the adaptation rule can fall into local minima.

Instead of moving one vector yi according to the sum of contribu-
tions of all yj, the CCA algorithm proposes to fix randomly a point yi
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