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Hot spots residues in protein–protein interface play crucial roles in protein binding. In the present study, complex
network method was applied to uncover influence of neighboring residues on hot spots and then several
network and microenvironment features were designed to describe the diversity of environment of hot spots.
After feature analysis by permutation importance in Random Forest (RF), an optimal 58-dimensional feature
set including ten network and microenvironment features was selected and then applied to construct a Support
Vector Machine (SVM) prediction model for hot spots. A satisfactory accuracy (ACC) value of 79.0% and a
Mathew's correlation coefficient (MCC) value of 0.470were obtained for independent test set. The novel network
features and microenvironment features were proved to be promising in discovering hot spots in interfaces.
A further microenvironment analysis was also performed. Amino acid residues directly contacting with hot
spots in residue–residue interaction network exhibit significant importance for the microenvironment of hot
spots. Amino acid alanine (A), aspartic acid (D), glycine (G), histidine (H), isoleucine (I), asparagine (N), serine
(S) and tyrosine (Y) are more likely to occur in the vicinity of hot spots than in the vicinity of non-hot spots.
These amino acid residues probably cluster together to construct a proper microenvironment for hot spots.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Protein–protein interactions are involved in different kinds of cellu-
lar functions such as metabolism and signal transduction [1,2]. Proteins
rarely perform one biological function alone, but tend to cooperate with
other proteins [3–5]. Studies on protein interfaces have revealed that
the free energy contributions of interfacial residues to binding are not
uniformly distributed. A small set of interfacial residues is defined as
hot spots accounting for the majority of the binding free energy [6]. At
present, hot spots could be detected by alanine scanning mutagenesis
[7]. Hot spots proved by experiments can be achieved from several
databases such as the Alanine Scanning Energetics database (ASEdb)
[8] and the binding interface database (BID) [9]. Unfortunately, experi-
mental methods are time-consuming, labor-intensive and high eco-
nomic costs. Therefore, developing reliable computational methods to
identify hot spots is of significant current interest.

Computational methods for the prediction of hot spots fall into the
following two categories. The one is energy-based method such as
Robetta [10] and FOLDEF function [11], in which the energy contribu-
tion to the interface binding is computed for every residue. The other
is knowledge-based method such as the KFC2 [12] that infers hot
spots by using a model constructed on the features of training data.
Various features were proposed to represent hot spots. Cho et al. pre-
dicted hot spots based on protein structure, sequence and molecular

interaction, in which the interactions between hot spots were found
to be π-related interactions [13]. Salam et al. used interaction engage-
ment index, topographical index, sequence conservation index, 3D re-
gional conservation index features and Bayesian network to predict
hot spots [14]. Xia et al. combined protrusion-based features with sol-
vent accessibility to predict hot spots [15]. Wang defined physicochem-
ical features of a residue by itself and its interacting residues of the
opposite protein chain, where RF was used to train the model and pre-
dict hot spots [16]. Other machine learning methods and biological sig-
nificance analysis were also available for the study of hot spots [17,18].

Moreover, the small world network [19–21] was used to represent
interactions of key residues in protein–protein interface in a few reports
[22]. Graph theory and its applications in biology were introduced in
[23,24], which has been widely used in proteomics [25–28], genomics
[29–31] and drug discovery [32–34]. Here, graph theory was employed
to represent interface. Several network topological features were then
calculated to describe hot spots. These studies show that rational design
of proper features is quite important in an inferring tool.

Hot spots are not isolated in protein–protein interaction interfaces
[35,36]. “O-ring theory” indicates that hot spots are surrounded by ener-
getically less important residues that occlude bulk solvent from hot
spots [35]. “Double water exclusion” theory follows the “O-ring theory”
and also reveals that hot spots themselves are water-free [37]. Bagley
used the radial distributions of properties to describe the protein sites
[38]. In the present study, several microenvironment features were
designed for hot spots, which were capable of reflecting different
physicochemical properties of amino acid residues in the vicinity of
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hot spots. Then, a prediction model was constructed by combining
these features with sequence features and structure features. The SVM
was applied to construct prediction model based on an optimal feature
set, in which 58 features were contained with 10 novel features.
A satisfactory prediction result was obtained (ACC: 79.0%, MCC:0.470)
for independent test set.

2. Materials and methods

2.1. Datasets

CSU program [39] was used to define atomic contacts between resi-
dues. If a residue has atomic contacts with residues that belong to any
other chain in the complex, it is described as interfacial residue. The
training data consists of 20 protein complexes taken from the ASEdb
database [8] with 77 hot spots and 241 non-hot spots. 18 protein com-
plexes with 38 hot spots and 86 non-hot spots from the BID database
constitute the independent test set [9]. The same training and indepen-
dent data setwere used as in the study byWang [16], where one repeat-
ed amino acid residue was removed. In order to avoid redundancy and
homology bias, protein sequence in the training set and the indepen-
dent test set were aligned by CD-HIT with sequence identity b35%
[40]. The interfacial residue substitution with change of binding free
energy ≥2.0 kcal/mol was defined as hot spots in the training set,
while such positions labeled as “strong” in the BID database were
identified as hot spots in the independent test set. The training and
the independent data set are listed in the Supplementary material 1.

2.2. Classification method

In this study, SVM [41] with the radial basis function as kernel is the
classifier, implemented in LIBSVMpackagewhich is available atwebsite
http://www.csie.ntu.edu.tw/~cjlin/libsvm/index.html#nuandone. Grid
search was performed to search for the optimal parameters cost (C)
and gamma (g). The search interval for cost (C) is [20, 212] and for
gamma (g) is [2−15, 25]. The optimal value of C and g is 4096 and
0.065, respectively.

2.3. Evaluation of classifier

The training set was randomly divided into ten subsets of approxi-
mately equal size. Nine subsets are used as the training set for develop-
ing SVM model and the remaining as the testing set for evaluating it.
This process is repeated ten times until every subset is used for testing
once. All features are standardized before modeling.

The sensitivity (SE), specificity (SP), prediction accuracy (ACC) and
Mathew's correlation coefficient (MCC) are the evaluation criterions.
These measurement criterions are defined as follows

SE ¼ TP
TP þ FN

ð1Þ

SP ¼ TN
TN þ FP

ð2Þ

ACC ¼ TP þ TN
TP þ FP þ TN þ FN

ð3Þ

MCC ¼ TP � TN−FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FPð Þ TP þ FNð Þ TN þ FPð Þ TN þ FNð Þp ð4Þ

Where TP, FP, TN, FN are the numbers of true-positive, false-positive,
true-negative and false-negative, respectively.

3. Calculation

In order to well describe hot spots, a feature set combining conven-
tional features, amino acid residues interaction network features and
microenvironment features was constructed.

3.1. Network parameters

First, a residue–residue interaction network was constructed based
on the distance between residues. Residueswere defined to be connect-
ed in residue–residue interaction network if the distance between any
two residues was smaller than the sum of their Van der Waals radii
plus a threshold value of 0.5 Å [42]. Every protein complex was
modeled as an undirected network graph, named bound network, in
which vertex represents residue, edge represents residue–residue inter-
action. Similarly, undirected graph was used to represent the residue–
residue interaction in single chain PDB structure, named unbound net-
work. Igraph package (version 0.5.5-4) in R [43] was used to calculate
the network parameters such as degree, closeness, betweenness and
bonpow in both bound networks and unbound networks. The introduc-
tion and calculation methods of degree, closeness, betweenness and
bonpow are in ref. [23].

3.2. Microenvironment features

Microenvironment features refer to different environment-based
physicochemical features, which suggest the diversity of microenviron-
ment between hot spots and non-hot spots. Based on the residue–
residue interaction networks, the amino acid residues in the vicinity of
hot spots and non-hot spots named neighboring residues were detect-
ed. The neighboring residues were labeled as neighboring residues in
the first shell, the second shell and the third shell according to the dis-
tance between residue and central residue. An example is illustrated
in Fig. 1.

Environment-based physicochemical features include environment-
based hydrophobicity (ENPHO), environment-based hydrophilicity
(ENPHI), environment-based isoelectric point (ENIP), environment-
based mass (ENM), environment-based polarity (ENP), environment-
based polarizability (ENPOZA) and environment-based propensity to
be buried inside (ENPBBI). They are the sum value of hydrophobicity,
hydrophilicity, isoelectric point, mass, polarity, polarizability and pro-
pensity to be buried inside of neighboring residues, respectively. They
were calculated for the neighboring residues in each shell respectively,
e.g. environment-based hydrophobicity (ENPHO) is specified as
environment-based hydrophobicity in the first shell (ENPHO I),
environment-based hydrophobicity in the second shell (ENPHO II)
and environment-based hydrophobicity in the third shell (ENPHO III).

They are defined as

ENPHO I ¼
X

1≤ i≤n

hydrophobicity ið Þ ð5Þ

ENPHO II ¼
X

1≤ j≤n

hydrophobicity jð Þ ð6Þ

ENPHO III ¼
X

1≤m≤n

hydrophobicity mð Þ ð7Þ

Where hydrophobicity (i) is the hydrophobicity of residue in the
first shell, hydrophobicity (j) represents the hydrophobicity of residue
in the second shell and hydrophobicity (m) describes the hydrophobic-
ity of residue in the third shell. The definitions of ENPHI, ENIP, ENM,
ENP, ENPOZA and ENPBBI are on the analogy of ENPHO. The influences
of neighboring residues in different shells on hot spots are different.
Taking the influence into consideration, different weights are speci-
fied for environment-based physicochemical features of neighboring
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