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Locally linear embedding (LLE) is a nonlinear dimensionality reductionmethod that can preserve the relationship
between samples in themapping space. The neighbors in high dimensional spacewill keep their relative position
in LLE space. Amethod based on the effect of the variables on the relative position of the samples in LLE spacewas
proposed for variable selection in NIR spectral analysis. In the method, the spectra are mapped into LLE space
with all variables at first, and then the mapping is repeated by removing a variable from the spectra. Therefore,
the movement of the samples in LLE space caused by a variable can be used to evaluate the effect of the variable
on the spectra. The variables that cause a largemovement will be the important ones to affect the relationship of
the spectra. For further selection of the informative variables specific to the target component, a forward stepwise
selection is applied to the variables selected by LLEmethod. To validate the performance of the proposedmethod,
it was applied to the partial least squares (PLS) modeling of three NIR spectral datasets of corn, pharmaceutical
tablets and tobacco lamina samples. Results show that the proposed method can effectively select the informa-
tive variables from the NIR spectra, and build a parsimonious model by using several tens of selected variables.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Multivariate calibration methods have been extensively used in the
near-infrared (NIR) spectroscopic quantitative analysis. Much attention
has been paid to variable selection in NIR spectral analysis for building
accurate and parsimonious models. Methods based on optimization al-
gorithms such as genetic algorithm (GA) [1–3], particle swarm optimi-
zation (PSO) [4], and interval partial least squares (iPLS) [5,6] have
been applied to search the optimal subset of variables. The results of
these methods demonstrated that better prediction can be obtained
using the selected variables than the full spectrum. However, optimiza-
tion algorithms generally need larger number of parameters and are
time-consuming. Therefore, simple and efficient methods based on sta-
tistics were used for the problem. Uninformative variable elimination
(UVE) and its variants [7–9], randomization test (RT) [10], Bayesian var-
iable selection [11], successive projections algorithm (SPA) [12,13], etc.
have been proposed. These methods evaluate the variables statistically
and then select the variables with higher or lower statistical value. Ad-
ditionally, stepwise selection method was widely used in NIR spectral
analysis due to the simplicity. Competitive adaptive reweighted sam-
pling (CARS) [14,15] selects variables in a stepwise and efficient way.

In our recent works, methods based on the detection of the influential
variables [16] and latent projective graph (LPG) [17] were proposed.
These works proved that satisfactory PLS models can be established
using several tens or even several informative variables.

Manifold learning techniques are developed for nonlinear dimen-
sionality reduction, which discover compact representations of high
dimensional data by recovering the underlying low dimensional mani-
fold. Manifold learning algorithms such as locally linear embedding
(LLE) [18], isometric mapping (Isomap) [19], Hessian LLE [20], and
Laplacian Eigenmap [21] have been proposed. These methods are all
based on Euclidean distance for exploiting the neighborhood informa-
tion as same as locallyweighted regression (LWR) and soft independent
modeling of class analogy (SIMCA). Among thesemethods, LLE is a local
method similar with LWR. The both of them need to select the nearby
points and determine the weights. However, the weights in LLE are op-
timized by minimizing the reconstruction errors, while the weights in
LWR are calculated according to the distance between the predicted
data and the training data points [22]. Additionally, compared with
LWR, LLE preserve the relationship between samples in mapping
space and find the embedding in a noniterative way. Therefore, LLE
and its extensions have become a promising techniques and used to
solve the problem of dimension reduction of high dimensional data,
such as face recognition [18,23], NIR spectra [24,25], gene expres-
sion [26,27], etc. Furthermore, it was also widely used in the data
visualization.

In this work, a method for variable selection is proposed based on
the effect of a variable on themapping distance in LLE space. The spectra
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aremapped into the low dimensional space by LLE operation. According
to the principle of LLE, the relationship, i.e., the relative position, be-
tween the samples in the spectral space will not change in themapping
space of LLE. However, if a variable that significantly affect the spectra is
removed, the relative position of the samples in LLE space may change
accordingly. Therefore, the change of the position, i.e., the movement
of the samples, in LLE space caused by removal of a variable can be
used to evaluate the effect of the variable on the spectra. Taking the
movement calculated by the average Euclidean distance as a criterion,
the variables that cause a large movement will be the important ones
to the spectra.

2. Theory and calculations

LLE is a nonlinear mappingmethod that computes low-dimensional,
neighborhood-preserving embeddings of high-dimensional inputs
[18,23]. The basic idea of LLE is to approximate each data point by a
linear combination of its neighbors and to find a low dimensional
configuration of data points. In LLE algorithm, each data point and
its neighbors are assumed to lie on or close to a locally linear patch
of a manifold. Therefore, a data point can be approximated as a linear
combination of its neighbors based on the assumption of local linear-
ity. Let X = {x1,x2, …,xN} be a set of N points in a high D dimensional
data space RD. The corresponding set of N points in a low d dimen-
sional data space Rd is denoted as Y = {y1, y2, … yN}. For each data
point xi, find its K neighbors by using Euclidean distance at first,
and then the reconstruction weights wi that best reconstruct xi line-
arly by its K nearest neighbors can be optimized by minimizing the
following cost function:

ε Wð Þ ¼
XN
i¼1

xi−
XK
j¼1

wijx jj
2
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under the constraints that each vector of reconstruction weights W
sums to unity. It should be noted that the constrained weights are
invariant to rotations, rescalings, and translations. Therefore, the
optimized reconstruction weights can characterize intrinsic geo-
metric properties of each neighborhood in the high dimensional
space.

In order to preserve the local geometry of the data in low dimensional
space, the embedding Y of X can be reconstructed with the weights by
minimizing the embedding cost function:
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and subjecting to the following constraints:
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In the calculations, a new sparse symmetric and positive semi-
definite matrix M is constructed based on the matrix W [18]. Then,
the constrained minimization problem can be converted to solving
eigenvalue problem of the matrix M as calculated by

M ¼ I−Wð ÞT I−Wð Þ ð4Þ

The eigenvectors ofM associated with the smallest d nonzero eigen-
values constitute the low embedding outputs Y.

The mapping quality is rather sensitive to the number K of the
nearest neighbors, as indicated in Eq. (1). In this paper, therefore,

the residual variance, defined by 1−ρ2
DXDY

, is employed as a quanti-
tative measure of the embedding results when the low dimension-
ality d is 3, and the optimal value for K is determined by [18]:

Kopt ¼ argmin 1−ρ2
DXDY

� �
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where DX and DY are the matrices of Euclidean distances (between
pairs of points) in the input data matrix X and the output data
matrix Y, respectively, and ρ is the standard linear correlation coef-
ficient of DX and DY.

Based on the property of LLE mapping, a method for variable selec-
tion inmodeling of NIR spectra is proposed. Clearly, the relative position
of the samples in high dimensional space can be kept by LLE transforma-
tion. If a variable that significantly affect the spectra is removed from the
spectra, the relative position of the samples would be affected in LLE
space. The change of the position in LLE space caused by removal of a
variable can be used to evaluate the effect of the variable on the spectra.
Therefore, the method maps the full spectra into LLE space at first, and
then the mapping is repeated by removing a variable from the spectra.
With the data in LLE space, the movement of the samples caused by
the removal of each variable can be calculated by averaging the move-
ment (Euclidean distance) of the samples. If the movements are ranked
in a descending order, a sequence indicating the significance of the
variables to the spectra can be obtained.

Only the influence of the variables on the spectra is involved in
the method. For building an efficient model of a component, however,
the variables specific to the component are more effective. Therefore,
a forward stepwise selection (FSS) is applied to the selected variables
by LLE. In the calculations, PLS models with an increasing number of
the variables along the ranked sequence are evaluated with the root
mean squared error of cross-validation (RMSECV). When a variable
makes the RMSECV smaller, the variable is accepted, otherwise,
rejected. The accepted variables are taken as the final selected vari-
ables to build the PLS model of a target component. LLE-FSS-PLS is
named for the method. Additionally, Monte Carlo cross-validation
(MCCV) is adopted in this study. In the calculation, half of the sam-
ples in the calibration set are randomly sampled to building the
model and the remaining half is used for validation. 1000 repetitions
are used for calculating the RMSECV.

3. Descriptions of the datasets

3.1. Dataset 1

The datasetwas downloaded fromhttp://software.eigenvector.com/
Data/Corn/index.html, which consists of NIR spectra, measured with
three spectrometers, and the moisture, oil, protein and starch values
of 80 corn samples. The spectra measured on mp5 NIR spectrometer
and the moisture values are used in this study. Each spectrum was re-
corded in the wavelength range 2498–1100 nm (4003–9091 cm−1)
with the digitization interval 2 nm. 56 spectra were selected, by using
Kennard–Stone (KS) algorithm, as calibration set and the other 24
spectra were taken as prediction set.

3.2. Dataset 2

The dataset was downloaded from the website of international dif-
fuse reflectance conference (IDRC), http://www.idrc-chambersburg.
org/shootout2002.html. It contains the spectra of 655 pharmaceutical
tablets from two spectrometers (Foss NIRSystems and Multitab Spec-
trometers) and the spectra of each instrument were split into a calibra-
tion set with 155 spectra, a validation set with 40 spectra and a test set
with 460 spectra. Transmittancemodewas used and the spectral region
is from 600 to 1898 nm with 2 nm increments. The assay values of the
active pharmaceutical ingredient (API) were included. In this work, the
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