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The recognition of the hardness of licorice seeds is a challenging task. The purpose of this investigation is to
identify the hardness of licorice seeds employing a semi-supervised learning method and near-infrared spec-
troscopy. An excellent semi-supervised learning model, the semi-supervised support vector machine (S3VM),
is built using the small labeled samples and the large unlabeled samples. Moreover, the proposed model is
solved by employing an effective method, the robust DC (difference of convex functions) programming.
The resulting algorithm only requires the solving of a few linear programs. Furthermore, this model is used
for the direct classification of licorice samples. Comparing with the supervised support vector machine
(SVM), experimental results on different spectral regions show that incorporating unlabeled samples in
training improves the generalization when insufficient training information is available. Moreover, our meth-
od outperforms the existing S3VM method by obtaining better performance in different spectral regions.
These results show that it is possible to identify the hardness of licorice seeds using the proposed S3VM
and near-infrared spectroscopic data. We hope that the results obtained in this study will help further inves-
tigations of the hardness of crop seeds.

Crown Copyright © 2012 Published by Elsevier B.V. All rights reserved.

1. Introduction

Near-infrared (NIR) [1] spectroscopy has demonstrated great po-
tential in the analysis of complex samples owing to its simplicity,
rapidity and nondestructivity. Recently, in the field of agriculture,
NIR spectroscopy has been applied to quantitative and qualitative
analysis, such as the determining of seed moisture, seed vigor and
seed purity [2–5]. NIR spectroscopy is based on the absorption of elec-
tromagnetic radiation in the region from 800 to 2500 nm (12,500
−4000 cm−1).

Licorice (Glycyrrhiza uralensis Fisch) is a traditional Chinese herbal
medicine, and it has both hard seeds and soft seeds like many other
legumes. The hard seeds are more suitable for storage and more resis-
tant to adverse environmental conditions than the soft seeds. Howev-
er, the soft seeds are morphologically very similar to the hard seeds.
Thus, it is difficult to distinguish them from each other without
damaging the seeds. Usually, the hard characteristics of licorice
seeds are determined by soaking the seeds [1], but this method is
time-consuming and sometimes destructive to the seeds. Therefore,
developing a fast and nondestructive recognition technique for lico-
rice seeds is an important and challenging subject.

Support vector machine (SVM) [6,7] is a promising supervised
learning method in pattern recognition, and has been successfully ap-
plied to chemometrics [8,9]. It is firmly rooted in the minimization of
structural risk which balances model complexity and empirical risk.
SVM is thus superior to traditional learning methods which are usual-
ly based on the minimization of empirical risk. SVM performs the
classification tasks only using the labeled samples. Thus when insuffi-
cient labeled samples are available, SVM is usually not satisfactory. A
considerable drawback of SVM is that it requires a large number of la-
beled samples in order to construct accurate classifiers. However, in
many real-world applications, the labeled samples may be very few
or expensive to obtain, while unlabeled samples are easier to collect.
In this setting, the supervised learning methods are difficult to use
owing to the lack of labeled samples.

Using both labeled and unlabeled samples for the purpose of
learning is called semi-supervised learning, where some knowledge
of the unlabeled samples is taken into account to improve generaliza-
tion during the training procedure. Semi-supervised SVM (S3VM)
[10–13] may seem to be the perfect semi-supervised learning ap-
proach since it combines the powerful regularization of SVM with a
direct implementation of the cluster assumption [12]. S3VM is trained
using the small labeled sample while simultaneously assigning the
large unlabeled samples to one of two classes so as to maximize the
margin (distance) between the different classes. Such margin is a
measure of the model complexity. The main drawback of S3VM is
that the objective function is nonconvex, and it is therefore difficult
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to find its exact solution. Some of the optimization algorithms have
been applied to semi-supervised SVM such as the exact solution
method [10] and approximation algorithms [11,13].

In this investigation, we present a semi-supervised learning model
to classify licorice seeds using NIR spectroscopy data. This investiga-
tion is motivated by the following observations:

(1) NIR spectroscopy has already been used as a fast and nonde-
structive technique in chemometrics.

(2) S3VM has become a powerful technology for classification prob-
lems. However, little attention has been applied to the recognition
of the hardness of legume crops employing semi-supervised
learning method.

(3) DC programalgorithm (DCA) [14–17] is an efficient and robust al-
gorithm for solving nonconvex problems, especially in the large-
scale setting.

The main contributions of this work are as follows:

(1) We propose a framework for identifying the hardness of licorice
seeds using semi-supervised SVM and NIR spectroscopy data.

(2) A new semi-supervised SVM formulation is presented and di-
rectly applied to identifying the hardness of licorice seeds
employing NIR spectroscopy data.

(3) The proposed S3VMmodel is solved by theDCA, andhas low com-
putational burden, only requiring to solve a few linear programs.

2. Theory and method

2.1. Semi-supervised support vector machine (S3VM)

S3VM is an extension of the supervised SVMwith an additional regu-
larization term for unlabeled samples. Specifically, assume that the sam-
ple set consist ofm labeled samples and p unlabeled samples. The labeled
samples are represented by the matrix A of sizem×n, and the unlabeled
samples are represented by the matrix B of size p×n. The labels for the
labeled samples are given by a diagonal matrix D of m-th order with
values of ±1. Each row of matrix A (resp. B) denotes a labeled sample
(resp. unlabeled sample). For each unlabeled sample xj, the variables rj
and sj(j=1,2,…p) represent the two possible misclassification errors.
The final class of the unlabeled sample is the one that results in the smal-
lest misclassification error. Finding a linear hyperplanewTx=b far away
from both the labeled and unlabeled samples can be formulated to min-
imize the objective function

‖w‖1 þ νeTξþ μeTmin r; sf g ð1Þ

subject to the constraints:

D Aw−ebð Þ þ ξ≥e; ξ≥0
Bw−ebþ r≥e; r≥0
−Bwþ ebþ s≥e; s≥0

8<
: ð2Þ

where an arbitrary dimension vector of ones is denoted by e. The compo-
nent by componentminimumof two vectors r and s is denoted bymin{r,
s}, with component j being: min{rj,sj}(j=1,…p). Two parameters ν>0
and μ>0 balance the model complexity and misclassification error. In
addition, they control over the influence of labeled and unlabeled sam-
ples. Variable ξ represents the classification error for the labeled samples.
The first two terms of the objective function, together with the first con-
straint correspond to a supervised 1-norm SVM, which attempts to clas-
sify the labeled samples. The last term in the objective function, together
with the remaining constraints assign each unlabeled sample xj to the
positive class or negative class, whichever generates a lower misclassi-
fication error: min{rj,sj}. Bennett and Demiriz formulated this problem
as a mixed integer program (MIP) in literature [10], where a globally
optimal solution of this problem was found. However, this method
(called MIP-S3VM) do not work on large unlabeled sample sets.

1-norm ofw (‖w‖1=∑ |wi|) instead of 2-norm is used as a regular-
ization term in the objective function, which corresponds to maximiz-
ing the classification margin using the infinity norm of w, namely 1

‖w‖1
.

Onemajor benefit of ‖w‖1 over ‖w‖2 in the objective function is variable
reduction since minimizing ‖w‖1 leads tomost elements of vectorw are
zero.When the ith component ofw is zero, the ith component of the ob-
servation vector x is irrelevant in deciding the class of x using linear de-
cision function f(x)=wTx−b. Thus variable selection [18,19] and
classification can be conducted jointly through the S3VM formulation.

2.2. DC programming

We outline the main algorithmic results for DC programming
[14–17]. The key to DC programs is to decompose an objective func-
tion into the difference of two convex functions, from which a
sequence of approximations of the objective function yields a se-
quence of solutions converging to a stationary point, possibly an opti-
mal solution. Generally speaking, a so-called DC program (Pdc) is to
minimize a DC function:

f xð Þ ¼ g xð Þ−h xð Þ; x∈Rn Pdcð Þ ð3Þ

with g(x) and h(x) being convex functions. ADCprogram is called a poly-
hedral DC programwhen either g(x) or h(x) is a polyhedral convex func-
tion (i.e., the pointwise supremum of a finite collection of affine
functions).

The DCA is an iterative algorithm based on local optimality condi-
tions and duality [14–17]. The idea of DCA is simple (to simplify, we
omit here the dual part): at each iteration, one replaces in the primal
DC problem (Pdc) the second component h by its affine minorization:
h(xk)+(x−xk)Tyk, to generate the convex program:

minimize : g xð Þ−h xk
� �

− x−xk
� �T

yk; x∈Rn
; yk∈∂h xk

� �n o
ð4Þ

Where ∂h is the subdifferential of convex function h. In practice, a
simplified form of the DCA is used. Two sequences {xk} and {yk} satis-
fying yk∈∂h(xk) are constructed, and xk+1 is a solution to the convex
program (4). The simplified DCA scheme is described as follows.

Initialization: Choose an initial point x0∈Rn and let k=0
Repeat

Calculate yk∈∂h(xk)
Solve convex program (4) to obtain xk+1

Let k:=k+1
Until some stopping criterion is satisfied.

DCA is a descent method without line search, and it converges lin-
early for general DC programs. In particular, for polyhedral DC pro-
grams, the sequence {xk} contains finitely many elements, and in a
finite number of iterations the algorithm converges to a stationary
point satisfying the necessary optimality condition [14,16].

DCA has been successfully applied to many optimizations. For ex-
ample, only using the information from the labeled samples, a vari-
able selection model for the supervised SVM was proposed based on
DCA in literature [17]. This supervised learning machine is trained
without considering unlabeled samples.

2.3. DC formulation for solving S3VM

Let t=r−s; thus min r; sf g ¼ 1
2 r þ s−ð jtjÞ. Furthermore, we intro-

duce the variable z such that |w|≤z, and then S3VM (1)–(2) is equiva-
lent to minimizing the objective function

eTzþ νeTξþ 1
2
μeT r þ s−ð jtjÞ ð5Þ
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