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In metabolomics research a large number of metabolites are measured that reflect the cellular state under the
experimental conditions studied. In many occasions the experiments are performed according to an
experimental design to make sure that sufficient variation is induced in the metabolite concentrations.
However, as metabolomics is a holistic approach, also a large number of metabolites are measured in which
no variation is induced by the experimental design. The presence of such non-induced metabolites hampers
traditional data analysis methods as PCA to estimate the true model of the induced variation. The greediness
of PCA leads to a clear overfit of the metabolomics data and can lead to a bad selection of important
metabolites. In this paper we explore how, why and how severe PCA overfits data with an underlying
experimental design. Recently new data analysis methods have been introduced that can use prior
information of the system to reduce the overfit. We show that incorporation of prior knowledge of the
system under investigation leads to a better estimation of the true underlying structure and to less overfit.
The experimental design information together with ASCA is used to improve the analysis of metabolomics
data. To show the improved model estimation property of ASCA a thorough simulation study is used and the
results are extended to a microbial metabolomics batch fermentation study. The ASCA model is much less
affected by the non-induced variation and measurement error than PCA, leading to a much better model of
the induced variation.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Advances in (bio-)analytical techniques enable scientists to use
more and more variables to characterize their samples. The fact that
the number of experiments is often low leads to high dimensional
data with the number of variables greatly exceeding the number of
experiments. This type of data is often referred to as high dimensional
or megavariate. Microbial metabolomics data, as an example of
megavariate data, emerges from the ‘omics’ field that focuses on low
molecular weight compounds, so-called metabolites, present in and
around microbial cells at a given time during their growth or
production cycle [1]. The metabolome, i.e. the concentration of all
metabolites, is a reflection of the phenotype of the sample under the
studied experimental conditions [2]. The experimental conditions are
changed or perturbed such that sufficient variation is induced in the
metabolome, that responds to these changes or perturbations in the
experimental conditions. Since metabolomics is a holistic approach,
covering as many metabolites as possible, there are also always many
metabolites in the data set in which no variation is induced by the
change or pertubation of experimental conditions. The reason for this
is that a change or perturbation in an experimental condition ‘hits’ or
excites only part(s) of the biochemical network, while the rest of the

network operates as if under normal operating conditions. These, so-
called non-induced, metabolites can still have a large variation in their
concentration, i.e. the metabolites are not tightly regulated, but this
variation is not caused by a change or a perturbation of the
experimental condition. Furthermore, there is also always some
random variation in the data set due to measurement error [3].

Ideally a data analysis method used for analyzing this type of data
should only model the induced variation leaving all other variation for
the residuals. Here we define incorporation of all variation other than
the induced variation as overfit. Principal Component Analysis (PCA)
is often used for explorative data analysis and focuses on describing
the maximum variation in the data by modeling it into scores, that
provide information on the samples, and loadings, that provide
information on the metabolites. By focusing on explaining as much of
the variation in the data as possible PCA tends, especially with only
few experiments in the data set, to be greedy and, therefore, to overfit
the data by incorporating random sampling variation and the
variation of the non-induced metabolites into the model.

The use of prior information can help to focus the explorative data
analysis. In curve resolution, nonnegativity, unimodality and smooth-
ness constraints help to identify chemical compounds in complex
mixtures [4,5]. In biology knowledge of transcription factors can be
used to unravel complex gene expression data [6,7]. Recently new
methods were introduced that are able to incorporate various types of
prior information to focus the data analysis [8,9]. By using these more
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advanced explorative analysis methods, focus is on the relevant part of
the variation and thus overfit can be reduced and sometimes even
additional information can be obtained [10].

An underlying structure, that is nowadays often present in many of
the collected megavariate ‘omics’ data sets, is an experimental design
in which experimental factors are varied to study their effect [11–13].
Several methods for analyzing metabolomics data with an underlying
experimental design exist, that focus the analysis onto the induced
variation by the design by taking it into account [11,14–18]. As a
method, that uses the underlying design in the microbial metabo-
lomics data to focus the analysis, we have chosen to use ANOVA-
simultaneous component analysis (ASCA) [19]. In ASCA the induced
variation can be separated from the non-induced variation and
measurement error by creating orthogonal partitions. Subsequent
simultaneous component analysis of the individual partitions may
elucidate the relation between the samples and the metabolic profile
for the effects. The orthogonality between the data partitions allows
for individual estimation of effects without mixing of effects. Recently
a method was developed that allows statistical validation of mega-
variate effects in ASCA [20]. It also creates the possibility of testing
whether the experimental design induces any sources of variation in
the data. Although many metabolomics data sets have an underlying
experimental design, in the analysis this is still often neglected [21].

The major goal of this paper is to show by comparison of PCA and
ASCA how, why and how severe PCA overfits data with an underlying
experimental design. By comparison to ASCA the effect of incorporat-
ing prior knowledge with respect to experimental design into the
explorative analysis can be shown. In a thorough simulation study we
will show how PCA and ASCA behave in terms of fit (how well are the
induced metabolites that vary according to the underlying design
modeled?) and overfit (how much is modeled of the non-induced
metabolites that do not vary according to the design?)whenmodeling
metabolomics data in which induced and non-induced metabolites
are present. The results of the simulation study will be discussed in
terms of the row and column space of the data [22] in order to show
why and how incorporation of design information helps to focus the
explorative analysis. Furthermore bothmethods will be used tomodel
microbial metabolomics data obtained from Escherichia coli batch
fermentations with an underlying design.

Section 2 of this paper describes PCA, ASCA and their differences. It
also describes how the simulated data and the E. coli batch
fermentation metabolomics data have been created and which
measures were used to assess the ability of modeling the induced
and non-induced variation. Section 3 describes the results and at the
end some important findings are concluded.

2. Materials and methods

In the following text bold uppercase characters (e.g. X) represent
matrices, bold lowercase characters (e.g. x) represent vectors and
scalars are displayed as italic characters (e.g. I).

2.1. Principal Component Analysis (PCA)

PCA [23] decomposes the data X [I× J], consisting of I samples with
J measured variables, into a bilinear model of scores T [I×R] and
loadings P [J×R] according to

X = TPT + E ð1Þ

Here TPT, the PCA model (XP̂CA), represents a lower dimensional
approximation of X and E contains the residuals. The number of
principal components R, with R≪min(I, J), can be chosen by means
of cross-validation or by using a scree graph [24]. The calculation of

the scores T and loadings P by PCA is performed in such amanner, that
the sum of squares of the residuals Q , as shown in Eq. (2), is
minimized.

Q T;P jXð Þ = ∥X−TPT∥2 ð2Þ

PCA restricts the scores and loadings with the requirements of TTT
being a diagonal matrix and PTP being an identity matrix. This
restriction does not decrease the explained variation but serves to
arrive at easy interpretable graphs.

2.2. ANOVA-Simultaneous Component Analysis (ASCA)

A recently developed data analytical method for analyzing
megavariate metabolomics data with an underlying experimental
design is ASCA [19]. This method starts with the ANOVA decomposi-
tion of the data X [I× J] and partitions the variation in the data into
orthogonal parts per effect according to the experimental design. The
variation partitioning for the effects with ANOVA is achieved by
averaging the experiments, that have been performed with the same
level-setting of the corresponding factors [8]. If for instance the
underlying experimental design is a full factorial design with three
factors, the partitioning for the main effects can be represented by
Eq. (3).

X − XM = X1 + X2 + X3 + Xres ð3Þ

In Eq. (3), XM represents the matrix of means, which is calculated
as

XM =
1
I
1I1

T
I X;

with 1I [I×1] denoting a vector of ones. The matrices X1, X2 and X3

represent the variation partitions of the three main effects (the three
design factors) and Xres contains the remainder variation consisting of
all interaction effects and all other sources of non-induced variation
and measurement error. Of course one can choose to also decompose
the interaction partitions or to combine different partitions into a
single matrix [8]. In Eq. (4) the orthogonality between the variation
partitions is shown, which means that the column spaces of the
individual matrices on the right side of the equality sign in Eq. (3) are
orthogonal. Proof of Eq. (4) is supplied elsewhere [8].

XT
αXβ = 08 α;βf g⊂ 1;2;3; resf g : α ≠ β ð4Þ

The orthogonality between the variation partitions is a desirable
property, because it shows that each partition per effect is calculated
independently without mixing of effects. Because all variation
partitions are orthogonal to each other the following statement is
also true,

X1 + X2 + X3½ �TXres = 0;

and shows that the combined variation partitions for the main effects
are orthogonal to and, thus, independent of the remainder variation.

To describe ASCA as a multivariate regression model here we focus
on the variation partitioning for the effects within mean centered data
(Xmc=X−XM), having an underlying two level full factorial design.
The various multivariate effects can also be achieved by least squares
fitting of a linear model [25,26]. The linear model, for an experiment
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