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A modification of the ANOVA–PCA method, proposed by Harrington et al. to identify significant factors and
interactions in an experimental design, is presented in this article. The modified method uses the idea of
multiple table analysis, and looks for the common dimensions underlying the different data tables, or data
blocks, generated by the “ANOVA-step” of the ANOVA–PCA method, in order to identify the significant
factors. In this paper, the “Common Component and Specific Weights Analysis” method is used to analyse
the calculated multi-block data set. This new method, called AComDim, was compared to the standard
ANOVA–PCA method, by analysing four real data sets. Parameters computed during the AComDim procedure
enable the computation of F-values to check whether the variability of each original data block is
significantly greater than that of the noise.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Several multi-block analysis procedures exist for the simultaneous
study of multiple sets of matrices with different variables describing
the same samples (for example, see [1–4]). These methods may be
useful in chemometrics to combine information about the same set of
samples contained in signals acquired using different techniques (IR
spectroscopy; Raman spectroscopy; physico–chemical analyses; etc.).
One such multi-block technique is “Common Component and Specific
Weights Analysis”—CCSWA [5].

The objective of multi-block analysis methods is to describe p data
blocks observed for the same n samples (i.e. a set of p data matrices
(Xi, i=1 to p) each with n rows, but not necessarily the same number
of variables). The method consists in determining a common space for
all p data blocks, with each matrix having a specific contribution
(“salience”) to the definition of each dimension of this common space.
This is done by finding the directions describing common distribu-
tions of the samples in the spaces defined by the different data blocks
(hence the name Common Component, abbreviated CC or Common
Dimension, abbreviated CD). Salience indicates the importance of each
block in the construction of the common dimension, and a “percentage

of variability extracted” by each dimension can be computed. The
particular implementation of CCSWA used in this work, “ComDim”, was
developed and coded in Matlab [6] by D. Bertrand [7].

The work presented in this article shows that an interesting
extension of ComDim is to use it in the analysis of sets of blocks calcu-
lated from a single initial data matrix. AComDim, presented here, is one
such application, based on replacing themany separate PCAs performed
in the ANOVA–PCA method [8], also abbreviated APCA, by a single
analysis using ComDim. In this case, the various “Factor matrices” and
“Interaction matrices” calculated from the initial data matrix are all
analysed simultaneously, resulting in a series of “CommonComponents”
alongwhich the samples are distributed, each associatedwith a vector of
“saliences” reflecting the importance of the contribution of each data
block to the corresponding “Common Component”.

After a brief presentation of both the ComDim and the APCA
methods, this article will present several real case studies, showing
the interest of this new method, particularly in comparison to the
standard APCA method.

2. Theory

2.1. Notation

Matrices will be denoted by bold uppercase letters (e.g., X),
column vectors will be denoted by bold lowercase letters (e.g., u), and
row vectors by bold lowercase letters followed by the uppercase
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symbol T (e.g., uT), standing for “transposed”. Scalars will be indicated
by a letter in italics (e.g., N or n).

2.2. ComDim [5,9,10]

This procedure iteratively calculates, for each successive common
dimension, a series of score vectors (coordinates of the n samples
along the direction defined by that common dimension). Each block
has a specific weight, called “salience”, associated with each
dimension of the common space. Significant differences in the values
of the specific weights for a given dimension reflect the fact that the
dimension contains information which was present in some blocks
but not others. The main idea of the Common Dimension procedure,
ComDim, is to calculate a weighted sum of the sample variance–
covariance matrix (and not the variable variance–covariance matrix,
as is usually the case in multivariate analysis) of each block, and then
extract its first normed Principal Component as the first “Common
Dimension” or “Common Component”. The algorithm then iteratively
calculates the weight of each block to the calculated CC. Finally, the
percentage of variability extracted by the CC can be calculated. After
the computation of the first CC, each original block matrix is deflated,
and the procedure repeated for the calculation of the second Common
Component, and so forth. Therefore, each Common Component is the
first PC of a weighted sum of deflated matrices.

In order to present ComDim from an algorithmic point of view, one
assumes a set of n samples is described by p sets of different variables.
Hence, p matrices Xi of sizes n×ki (i=1 to p) are available, for which
one wants to determine the Common Components.

Each matrix is first column-centered (to obtain Xic), and then
normalised (division by its Frobenius norm), to obtain the scaled
matrix Xis. Although in certain cases, it can decrease the signal-to-
noise ratio, the normalisation of the data matrices needs to be done to
ensure that all data blocks have similar orders of magnitudes, so that
no table predominates over the others, which would reduce the
influence of the matrices with low orders of magnitude. Since the p
original data blocks are column-centered and normed, p also
corresponds to the total variance of the data at the beginning of the
procedure. A parameter unexpl is set equal to p:

unexpl = p ð1Þ

For each Xis, a matrix sample variance–covariance Wi of dimen-
sions n×n is computed as:

Wi = XisTX
T
is ð2Þ

The Common Components are computed in an iterative fashion. At
each iteration, the weighted sum of the p Wi matrices is computed,
resulting in a globalWGmatrix. In the first iteration, all the weights, λi,
are set to 1.

WG=0;
for i=1 to p

λi=1;

WG = WG + λiTWi ð3Þ

end

WG is then decomposed by singular value decomposition (SVD),
yielding UW (matrix of row-singular vectors), SW (diagonal matrix
with the singular values sorted in decreasing order), and VW (matrix
of column-singular vectors):

WG = UWTSWTVT
W ð4Þ

The first column of UW (i.e., the normed score vector of WG

associated with the largest singular value) is chosen as the first
estimation of the “Common Component score” of WG, denoted as q. A
new estimation of λi is calculated using q andWG, and an unfit value is
then determined as a function of the updated λi values:

unfit=0;
q=UW (:,1);
for i=1 to p

λi = qTTWiTq ð5Þ

Aux = Wi−λi × qTqT ð6Þ

unfit = sum sum Aux: TAuxð Þð Þ ð7Þ

end

where the symbol ‘.’ before the product symbol means that each
element of Aux is multiplied by itself.

Aux is a “residuals”matrix of the variability unaccounted for by the
Common Components calculated up to that point. The unfit value is
the variance of all the blocks unexplained by all those CCs.

The calculation ofWG (from the updated λi values—Eq. (3)), then q
(after SVD of the updated WG—Eq. (4)), and then λi is iterated (as in
Eqs. (5)–(7)) until convergence of unfit. The final q vector is the first
Common Component (its elements being equivalent to normalized
scores). The final λi value indicates the weight of the original Xi in the
Common Component (“salience”), and reflects the dispersion of the
samples along that dimension, and so can be seen as a measure of
variance.

A percentage of variance contained in the Common Components is
given by:

expl = 100 × unexpl–unfitB
� �

= p ð8Þ

unexpl is then updated as:

unexpl = unfit ð9Þ

Each Xis data matrix is then “deflated” (Eqs. (10) and (11)) using
the normalized scores vectors:

Aux = I−qTqT ð10Þ

Xis = AuxTXis = I−qTqT
� �

TXis ð11Þ

(where I is the n×n Identity matrix).
New estimations of Wi are computed from these “deflated” Xis

matrices, and the following Common Components are computed as
before.

2.3. APCA [8]

Analysis of variance—principal component analysis (APCA) was
introduced in 2005 by Harrington et al. [8] for the detection of
biomarkers in high dimensional proteomic data sets. Since then, it has
been applied in several other situations [11–13]. The aim of the
method is to determine whether known characteristics of the samples
(or “factors”, in the Experimental Design terminology) produce a
variation in the data which is significantly larger than the variations
due to noise. A clear explanation of the method is given in [13]. To
briefly summarise the method here, one assumes that f factors, each
described by lf levels, are known for matrix X. First, X is column-
centered, yielding Xc. A “Factor 1 matrix” M1 is created from Xc, by
replacing each row by the average vector of all rows whose level for
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