
Short communication

Multi-core computing: A novel accelerating method for chemometrics calculation

Zhi-Min Zhang a, Yi-Zeng Liang a,⁎, Qing-Song Xu b

a College of Chemistry and Chemical Engineering, Research Center of Modernization of Chinese Medicines, Central South University, Changsha 410083, PR China
b School of Mathematical Science and Computing Technology, Central South University, Changsha, 410083, PR China

a b s t r a c ta r t i c l e i n f o

Article history:
Received 17 September 2008
Received in revised form 30 October 2008
Accepted 31 October 2008
Available online 11 November 2008

Keywords:
Multi-core computing
Cross-validation
Parallel algorithm
Message Passing Interface

The higher speed is the eternal pursuit of any chemometric algorithm. In order to take full advantage of the
multi-core processor's computing resources (the prevailing current of personal computer) and accelerate the
time-consuming algorithms in chemometrics, a novel multi-core computing method is introduced. Leave-
one-out cross-validation is taken as an example to show the powerful capability of the multi-core computing.
The comparison results show that the execution time drops rapidly with the increasing number of computing
cores, which demonstrates that the multi-core computing is a promising tool for solving computing-
intensive and data-intensive problems in chemometrics.

© 2008 Published by Elsevier B.V.

1. Introduction

With the development of analytical instruments, analysts can
acquire more complex signals which have thousands of variables. For
example, there are more than 1500 variables in the Fourier transform
near infrared (FT-NIR) spectra. However, while applying the Principal
Components Regression (PCR) [1] or Partial Least Squares regression
(PLS) [2] to such large datasets, the speed is low, especially when the
cross-validation procedure is used, which can't finish computing
within acceptable time; hence therewas a need tomodify the classical
algorithms to accelerate the cross-validation. Firstly, a fast and
memory-saving PLS regression algorithm called PLS kernel algorithm
was developed by Lindgren et al. [3,4]. Then Wu et al. [5] had also
modified four classical PCA algorithms to their kernel versions to
accelerate the speed of the PCA and cross-validation. More recently,
Barrosa and Rutledge [6,7] proposed the Principal components
transform-partial least squares method, which can dramatically
accelerate the cross-validation of the calibration models.

All the above modifications were just to accelerate the algorithms'
performance, which is the eternal pursuit of any chemometric
algorithm. But nowadays the general trend in personal computer
processor development is the leap from single-core to multi-core with
the rapid improvement on engineering and manufacturing [8]. When
single threaded leave-one-out cross-validationprogram is executedon a
quad-core processor, only one core is busy and the others are idle. It is a

waste of computing resources. Not only leave-one-out cross-validation
but also the other time-consuming algorithms in chemometrics, which
can be parallelized, should be redesigned and parallelized.

In this work, aside from using the faster version PCA or PLS
mentioned in the previous paragraphs, the multi-core computing
method is introduced to accelerate the cross-validation algorithm. The
parallel method can accelerate leave-one-out cross-validationmethod
to 3.8 times on an Intel® Core™2 Quad Q6600 processor (4 cores).

The paper is organized as follows. In Section 2, the parallel leave-
one-out cross-validation method is introduced and its advantage is
presented. In Sections 3 and 4, near infrared datasets are used for
exploring this parallel method.

2. Parallel leave-one-out cross-validation

In this study, Message Passing Interface (MPI) [8], MATLAB® C
Math Library Version 2.1 [9], Fedora 7 Linux operating system and C++
compiler of GNU Compiler Collections version 4.2 were used for
implementing the parallel leave-one-out cross-validation. This work
was done on a Dell Inspiron 530 PC with an Intel® Core™2 Quad
Q6600 processor and 2048 M memory.

2.1. MPI and MATLAB® C Math Library Basics

The kernel techniques are MPI and MATLAB® C Math Library.
MPI is a library of standard subroutines for sending and receiving

messages and performing collective operations. During an MPI based
parallel computation, a fixed number of processes are created by the
mpirun command (a command of MPICH which can start a parallel
computation) at the initialization, and commonly, one process is created
per core. These processes execute on different cores simultaneously and

Chemometrics and Intelligent Laboratory Systems 96 (2009) 94–97

⁎ Corresponding author. Tel.: +86 731 8830824.
E-mail address: yizeng_liang@263.net (Y.-Z. Liang).

0169-7439/$ – see front matter © 2008 Published by Elsevier B.V.
doi:10.1016/j.chemolab.2008.10.010

Contents lists available at ScienceDirect

Chemometrics and Intelligent Laboratory Systems

j ourna l homepage: www.e lsev ie r.com/ locate /chemolab

mailto:yizeng_liang@263.net
http://dx.doi.org/10.1016/j.chemolab.2008.10.010
http://www.sciencedirect.com/science/journal/01697439


communicate by calling MPI library subroutines to send and receive
messages between or among processes [11]. The number of simulta-
neous processes (np) is fixed at program initialization in an MPI
computation, which can be determined by calling the subroutine
MPI_Comm_size, and the identifier of the process can be determined by
calling the subroutineMPI_Comm_rank (the identifier of the process (i)
in an MPI computation is a unique, contiguous integer which was
numbered from 0). Although MPI is a complex library which comprises
129 subroutines, in this study, only seven subroutines are used. The used
subroutines are listed as follows (see Table 1).

The MATLAB® C Math Library is a collection of mathematical
routines written in C, which makes the mathematical core of MATLAB
available to application programmers [9]. All thematrix computations,
such as transpose, multiplication, inverse and singular value decom-
position, are done by calling the MATLAB C Math Library.

2.2. Broadcast data to processes

In the parallel leave-one-out cross-validation, the data (X matrix
and y vector) of every process are the same, and the source code of
every process is also the same, but during the execution the identifiers
are different, so the process's start index si and end index ei of samples
are different which are determined by the identifier of the process.
There is only one copy of the source code; the source code is compiled
to a program. When the program is started to run by the mpirun
command, a group of processes are created and running on different
cores and each process with a unique identifier. So one can use the
unique identifier to partition task and assign different tasks to dif-
ferent processes in the source code. (Please see the source code in the
Supplementary information.)

The root process (the identifier is 0) reads the training set of
spectra (X) and the standard concentration vector (y), then it calls the
MPI_Bcast subroutine, which distributes the data to all the other
processes. The operation is illustrated in Fig. 1, each row means a
process and their memory layouts are denoted by the grid of each row,
the root process is denoted by the first row of the matrix. Before the
dataset is broadcasted, the memory layouts of these processes are
denoted by the left matrix. After the dataset is broadcasted, the
memory layouts of these processes are denoted by the right matrix.

2.3. Partition computing task

Let us assume the training set of spectra is represented by a matrix
X of orderm×n, the number of processes is np and the identifier of the
calling process is i (0≤ ibnp). The partition of leave-one-out cross-
validation computing task can be illustrated in Fig. 2 and described as
follows:

1. mAve=m/np, mLeft =m ·mod(np).
In step 1, mAve is the result of the integer division m/np. mLeft is
arithmetical remainder to m modulo np.

2. AssignmAve+1 samples to each of themLeft first processes andmAve

samples to the remaining processes to deal with (see also Fig. 2),
which can be mathematically described as follows:

Ti =mAve + 1 ibmLeft
Ti =mAve izmLeft

; si = ∑
i−1

k = 0
Tk + 1 and ei = ∑

i

k = 0
Tk:

(

In step 2, Ti is the number samples assigned to process i, si and ei
are the start and end indices of samples of the process, whose iden-
tifier is i, respectively.

2.4. Computing

The start index si and end index ei of leave-out samples treated by
process i can be obtained according to Section 2.3, also the training set
of spectra X and the standard concentration vector y have been
distributed to all processes. The leave-one-out cross-validation sub-
routine is called with the parameters si and ei in process i to finish the
task which has been assigned to process i.

2.5. Results collection

After computing, the prediction residual error (denoted by Pi in
Fig. 3) should be gathered from processes. The memory layout of
FORTRAN's multi-dimension array is different than that of C language.

Table 1
The used subroutines of the MPI library in parallel leave-one-out cross-validation

Subroutine Function

MPI_Init Initialize the MPI computation
MPI_Finalize Shut down a computation
MPI_Comm_size Determine number of processes
MPI_Comm_rank Determine my rank
MPI_Send Send a message
MPI_Recv Receive a message
MPI_Bcast Broadcast a message

Fig. 1. Broadcast the training set of spectra and the standard concentration matrix to
cores using the MPI_Bcast subroutine, each row represents data locations in a different
process. At the beginning, the training set of spectra X and the standard concentration
vector y are located only in process 0, after the calling of MPI_Bcast, they are replicated
in all processes.

Fig. 2. Partition the training set of spectra according to the number of the processor's
cores.

Fig. 3. Gather the prediction residual error array of each process to the root process for
concatenating. P is the prediction residual error array that is sent by calling the
MPI_Send subroutine in each process, and then it is received by calling the MPI_Recv
subroutine in the root process.

95Z.-M. Zhang et al. / Chemometrics and Intelligent Laboratory Systems 96 (2009) 94–97



Download	English	Version:

https://daneshyari.com/en/article/1181565

Download	Persian	Version:

https://daneshyari.com/article/1181565

Daneshyari.com

https://daneshyari.com/en/article/1181565
https://daneshyari.com/article/1181565
https://daneshyari.com/

