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The Arrhenius equation is widely used to describe the relationship between the rate of a chemical reaction
and the temperature. However, in some cases more precision is needed and a Modified Arrhenius (MA)
model, allowing the linear parameter to be temperature-dependent, appears as the correct alternative to the
plain model. Optimal designs for the Arrhenius equation have been already computed, for instance in
Rodríguez-Aragón and López Fidalgo [L.J. Rodríguez-Aragón and J. López-Fidalgo (2005). Optimal designs for
the Arrhenius equation. Chemometr Intell Lab Syst 77 131–138.] for independent and normally-distributed
errors with constant variance and in Rodríguez-Torreblanca and Rodríguez-Díaz [C. Rodríguez-Torreblanca
and J.M. Rodríguez Díaz (2007). Locally D- and c-optimal designs for Poisson and Negative Binomial
regression models. Metrika 66 161–172.] for different variance structures. However, the MA model has not
been studied at the same level. In this work, optimal designs for this last equation will be computed for a
general design space and different optimality criteria, and their performance will be shown through
convenient examples. A robustness analysis when a wrong choice of the initial values for the parameters is
made or some of the hypothesis on the model are not fulfilled will be performed, in order to be able to choose
the best design for each situation.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

From the middle of the 19th century on, several experimentally-
developed equations relating the rate constant k of a chemical reaction
to the temperature t have appeared in the literature. The fact that
different plots gave reasonably good linear fits with the same data was
due to the narrow temperature ranges usually employed in kinetic
studies [22]. Eventually all these equationswere dropped, mainly due to
the lackof theoretical justification, except for twoof them: theArrhenius
and Modified-Arrhenius ones, that were well explained theoretically.

The next subsections focus on the models and the statistical setup
and notation. The main results are given in Section 2, where optimal
designs are computed and compared with some others used in the
literature for the Arrhenius model. Section 3 analyzes the goodness of
the designs computedwhen the optimality conditions are not fulfilled.
Lastly, there is a discussion on the model and outlines of future work.

1.1. Arrhenius models

The Arrhenius equation was first used by Svante Arrhenius in his
studies of the dissociation of electrolytes [4], but nowadays is widely
accepted as the right tool to describe the influenceof temperature on the

rates of chemical processes, as well as many other physical processes
such as diffusion, thermal and electrical conductivity or viscosity.

The integrated form of the Arrhenius equation is ln(k)=A′-β/t where
β=C/R, with C being the activation energy and R the gas constant. By taking
exponentials the expected value of k can be expressed as E[k]=Aexp(−β/t)
where A=exp(A′)N0 is the frequency factor, βN0 and t is given in °K. By
making the substitution t=1/x it becomes the exponentialmodel, and thus
theoptimal designshavebeen studied for instance in [16] for independent
and normally-distributed errors with constant variance or in [31] for
different variance structures. Optimal and compound designs specifically
for the Arrhenius equation as well as a study of the efficiency of some
designs used in the literature can be found in [30].

However, for the analysis of more precise rate-temperature data,
particularly in studies covering a wide temperature range, it is usual to
allow A′ to be temperature-dependent, proportional to –ln(t), or equiv-
alently A proportional to 1/t raised to a powerm, producing

E k½ � = a
tm

e−β=t ; ð1Þ

where aN0 is now independent of the temperature and βN0; this is
the so called Modified-Arrhenius (MA) model. Usually (see Laidler,
1984), the procedure employed is to use the plain Arrhenius model for
data of lower precision or where the temperature range is limited, and
to analyze more precise data by using model (1).

As anexample, consider the [20]. TheNASAPanel forData Evaluation
publishes a series of evaluated sets of rate constants. The data aremainly
used to model stratospheric and upper tropospheric processes, with
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particular emphasis on the ozone layer and its possible perturbation by
anthropogenic and natural phenomena. In particular, the reaction of the
hydroxyl radical OH with methane has been extensively studied. The
temperature dependence of the rate coefficient of this reactionhad been
described mainly through the Arrhenius equation using different tech-
niques forestimation andalways for temperatures over 233°K. Butwhen
[14] extended the measurements of k to 195°K it appeared that the rate
coefficient did not follow a strictly Arrhenius expression. They obtained
a more accurate representation of the rate constant as a function of
temperature by using the equation k=2.80×10–14 t0.667exp(.1575/t). This
expression may be preferred for lower stratosphere and upper tropo-
sphere calculations, and it is confirmed by [5].

The MA model (as the two-parameter model E[Y(x)]=θ1xvexp(–θ2x)
via the change of variable (x=1/t) has been studied in [10] from a
Bayesian point of view. There m was always taken to be positive, the
design space fixed to be [0,∞) and the only criterion used was D-
optimality. Herewewill allowmb0 and restrictions on the design space,
and (locally) optimal designs will be computed with respect to different
optimality criteria, as well as restricted maximin designs. Heterosce-
dastic cases have been also studied and they are discussed in the final
section. Throughout the paper,mwill be assumed to be known.

1.2. Optimal design of experiments

The aim is to find the values {t1,t2,…} at which to take samples in
order to get the best estimators of the parameters of model (1), that is,
the estimators with minimum variance. In other words, we look for
Optimal Designs for this model. [6] introduced locally optimal designs
for nonlinearmodels, themodels coming from chemical kinetics.When
working with non-linear models like the MA, the best design will
depend on the values of the unknown parameters. To address this
problem, some kind of additional information is needed, either an initial
value for the parameters or a prior distribution for them. In any case, the
optimal design will be a function of these initial values or distributions
(locally or bayesian optimal designs). Specifically, we can write a non-
linearmodel as Y=η(t,θ)+ε, where Y denotes the observation, t∈T=[tmin,
tmax] is the independent variable (tminN0), θ=(θ1,θ2,…θs)T∈Θ is the
vector of unknownparameters, and η(t,θ) is a function that is non-linear
respect to θ. The ε term stands for the random errors, that will be
assumed to be independent and normally distributed with zero mean
and variance σ2.

A design is a collection of points of the independent variable, {t1,t2,
…,tN}, where N is the size of the design. It can be written by taking the
n distinct points (called the support points) and for each one the
proportion (weight) Pi that it has in the design, and from this point of
view, an approximate design can be defined as any probability measure
in T with finite support.

The information matrix becomes the main tool when looking for the
optimal design for the experiment. When the function η(t,θ) is differ-
entiable with continuous derivative for every parameter θi, the informa-
tionmatrix for a design ξ can bewritten asM(ξ,θ)=Σi

n
=1pijη(ti,θ)∇η(ti,θ)T,

where ∇η(t,θ) is the gradient vector of η(t,θ). For model (1), since m is
assumed to be known θ=(a,β)T, thus

jη t; θð Þ = t−mexp −β=tð Þ; −at−m−1exp −β=tð Þ
� �T ð2Þ

and the information matrix for the MA model is given by

M �; θð Þ = ∑
n

i = 1
pi

t−2me−
2β
t −at−2m−1e−

2β
t

−at−2m−1e−
2β
t a2t−2m−2e−

2β
t

0
@

1
A:

The inverse of the information matrix is (asymptotically) propor-
tional to the covariance matrix of the parameter estimators of the
model. For this reason, optimal experimental designs typically mini-

mize some convex function of the inverse of the information matrix.
The most used criterion is D-optimality, that focuses in the deter-
minant of the information matrix. A design ξ is D-optimal if it maxi-
mizes this determinant, which is equivalent to minimizing that of the
covariance matrix. A D-optimal design minimizes the volume of the
confidence ellipsoid of the parameters.

The General Equivalence Theorem is a useful tool for checking
whether a design is optimal, which happens when the directional
derivative is greater than 0 in every direction (design). In the case ofD-
optimality, it can be stated as follows: if s is the number of parameters
of the model and θ=θ0 is the vector of initial values of the unknown
parameters, then the design ξ⁎ is locally D-optimal if and only if

g�4 tð Þ = s−jη t; θ0
� �T

M−1 �4; θ0
� �

jη t; θ0
� �

� 0 8t 2 T ð3Þ

and the inequality becomes equality at the support points of ξ⁎.
If we are interested in looking for the best estimator for a linear

combination of parameters, then c-optimality is the criterion of choice.
It is specially used for vectors (1,0,…,0),…,(0,…,0,1); when considering
these individually, optimal designs for the estimation of each
parameter can be obtained. For c∈Rk, a design ξ is c-optimal if it
maximizes −cTM(ξ,θ)−1c, which is equivalent to minimizing Var(cTθ),
and the General Equivalence Theorem can be used to check whether a
design is c-optimal. However, c-optimal designs can be constructed
geometrically using Elfving's Theorem [11]; the procedure will be
detailed in Section 2.3. A discussion on support points and weights for
c-optimality for some non-linear two-parameter models can be found
in [13]. A general overview on optimal designs can be found for
example in the books of [27] or the recent of [3].

2. Computations

Through this section, general formulas for computing D- and c-
optimal designs for the MA model will be provided, and optimal
temperatures will be found for explicit values of m and the parameter
β. An example checking optimality of the proposed designs and a
study comparing the efficiency of some other designs found in the
literature for the Arrhenius model will illustrate the behaviour of the
computed designs. Since m is known, the parameters to be estimated
are a and β. It is not difficult to check that the optimal designs do not
depend on the error variance σ2, thus σ2=1 will be assumed with-
out loss of generality. And it can be seen that the (local) D-, c1- and
c2-optimal designs (with c1= (1,0)T, c2= (1,0)T) do not depend on the
initial value of the linear parameter a. Thus from now on we will
assume a=1.

2.1. D-optimal designs

Since we have two parameters we need at least two points in the
design. Let us begin by considering a two-point design, say supported
in {t1,t2} with tmin≤ t1b t2≤ tmax. Given that the number of design points
is the number of parameters of themodel, both points should have the
same weight for the design to be D-optimal ([32], Lemma 5.1.3), and
the determinant of the information matrix is (proportional) to

Det t1; t2ð Þ = e
−2β 1

t1
+ 1

t2

� �
t−2 m + 1ð Þ
1 t1−t2ð Þ2t−2 m + 1ð Þ

2 : ð4Þ

The points {t1,t2}maximizing Eq. (4) for different conditions onTand
m are given in Table 1, where theweight of every point is always 1/2 and
cases (a) and (b) assume m≥0. From now on, D-optimal designs with
two support points will be given just by those points, {t1,t2}, since the
optimal weights will be 1/2.
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