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Abstract

This paper presents a study of the variance sources and confidence limits in two PLSR models for the determination of the polymorphic

purity of Carbamazepine, using near and mid infrared spectroscopy. The variance sources estimated and compared were reference values,

instrumental responses and fit of the model. The variance of instrumental responses was estimated experimentally and theoretically, and the

differences were discussed. The confidence limits at three confidence levels: 95%, 90% and 50% were determined, presenting a good

agreement with the expected values. The predictive ability of the models was compared, showing that both present the same overall

performances with RMSEP of 0.67% for near infrared and 0.62% for mid infrared spectroscopy. It was also verified that, for both models, the

main variance source remains the error of the PLSR model.
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1. Introduction

The quantitative determination of a property of interest in

a chemical system is one of the most frequent practices in

analytical chemistry. In the majority of cases, this property

is the concentration of a compound present in the system.

However, when instrumental methods are employed, con-

centration is a property that cannot be observed directly,

being determined indirectly, through a relationship with a

measured physical or chemical property, such as emission or

absorption of radiation, conductivity or electrical potential,

in a practice called calibration [1]. Different calibration

methods are available to achieve this purpose, being

classified following the complexity of the data that is

treated as zero, first and second order calibration [2].

Independent of the calibration method that is employed,

the measurement of the uncertainty present in the predictions

using the model developed is an important characteristic. The

uncertainty can be defined as a parameter, associated with the

result of a measurement, that characterizes the dispersion of

the values that could be attributed to the measurand [3,4]. In

practice the uncertainty on the result may arise from different

sources, such as sampling, environmental conditions, matrix

effects and interferences, uncertainties of masses and

volumetric equipment, reference values, approximations

and assumptions incorporated in the measurement method

and procedure, and random variation [5].

The uncertainty of a predicted property of interest for an

unknown sample depends on all uncertainty sources involved

in the measurement process. Their determination for a

predicted value in multivariate calibration methods, such as

Partial Least Squares Regression (PLSR), by a sample-

specific standard error has been the focus of considerable

research in resent years [4,6–17]. The latest contributions

and applications have suggested that the approach of errors in

variables (EIV), proposed by Faber and Kowalski [6], and

simplified by Faber and Bro [7], can be applied for

determination of confidence limits in a predicted concen-

tration for an unknown sample. This last simplification was

recently implemented in an integrated Matlab toolbox for
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first-order multivariate calibration [8] and, when the uncer-

tainty in the reference values can be neglected, it leads to the

early proposal of Höskuldsson [9] that is already adopted by

the American Standards for Testing Materials (ASTM) [18].

The aim of this paper is to compare the uncertainty

sources and confidence limits for two PLSR models in the

determination of the polymorphic purity of Carbamazepine

III in binary mixtures of polymorphs I and III. The models

were built by diffuse reflectance spectroscopy in the near

(NIR) and mid infrared (MIR) regions. Variance sources

from reference values, instrumental responses and fit of the

model were investigated for both models and the confidence

limits and the prediction errors were determined.

2. Theory

2.1. Regression model

The calibration models described in the next sections

were built with the instrumental responses and reference

values for the interest property mean centered, thus, in all

equations introduced below this procedure will be implicit

in the notation.

The standard linear regression model can be expressed as

[10,12,17]:

y ¼ Xbþ e ð1Þ

where e (I�1) is the unmodeled part of y (I�1) the true

predictand vector, X (I�J) is a matrix of instrumental

responses (true predictor matrix); b is the regression vector.

Where e is assumed to be identically and independently

distributed (iid), and I and J denote the number of

calibration samples and predictor variables (e.g., wave

numbers), respectively.

The PLSR model, following SIMPLS formalism [19], is

given by:

ŷy ¼ X̃Xb̂b ð2Þ

where ŷ is a vector with the estimated values for a property

of interest; X̃ is the matrix of measured instrumental

responses; and b̂ is a vector with the estimated regression

coefficient, calculated as:

b̂b ¼ R̂RT̂TTỹy ð3Þ

where R̂ and T̂ are the estimated weight and score matrices,

ỹ is the measured reference values and ‘‘T’’ superscript

indicates transpose operation.

2.2. Sample-specific standard error of prediction

The approach proposed by Faber and Kowalski [6] is

based on the Errors in Variables (EIV) theory. It attempts to

account for errors in reference values ỹ and in instrumental

responses X̃, assuming that the errors are independently and

identically distributed (iid) in both calibration and prediction

data. After some simplifications made when the models

explain a substantial part of the variance in X̃, the

expression to obtain the variance of the prediction errors

for the PLSR model (V̂( yi� ŷi)) can be expressed as [4]:

V̂V yi � ŷyið Þ ¼
�
hi þ

1

I

�
ðV̂V eÞ þ V̂V yÞ þ jjb̂b2jjV̂V XÞÞð

��

þ V̂V eið Þ þ jjb̂b2jjV̂V xið Þ ð4Þ

where V̂(y), V̂(X) and V̂(xi) are the variances of the errors of

the reference method, and of the instrumental responses in

the calibration set and the prediction sample, respectively.

V̂(e) and V̂(ei) are the variances of the residuals for the

calibration set and prediction samples and h is the leverage,

defined as:

hi ¼ x̃xTi R̂RAR̂R
T
A

� �
x̃xi ð5Þ

where ‘‘A’’ is the number of latent variables (LV) used in the

model. Eq. (4) is a general expression, which can be

simplified. According to Faber and Kowalski [10] the mean

square error of the calibration samples (MSEC) will not

estimate V̂(e) directly, instead it estimates: V̂(e)+ V̂(y)+ ||b̂||2

V̂(X). Assuming that there is no significant difference

between the variance of the residuals and instrumental

responses for the calibration step and in prediction samples,

(V̂(e)� V̂(ei) and V̂(X)�V(xi)), and Eq. (4) reduces to the

simplified form proposed by Faber and Bro [7], which can

be written as:

V̂V y1 � ŷyið Þ ¼ 1þ hi þ
1

I

��
MSEC� V̂V yÞð ð6Þ

where MSEC is estimated as:

MSEC ¼

Xl

i¼1

ỹyi � ŷyið Þ2

I � m
ð7Þ

where m denotes the number of degrees of freedom lost in

the model built. A representative estimate of m in PLSR

models that leads to an unbiased estimate of MSEC is

problematic. In a rigorous study, Van der Voet [20] shows

that an estimate of m can be achieved for PLSR models by

calculation of pseudo-degrees of freedom, using the results

from leave-one-out cross-validation.

An estimate of an unbiased MSEC can also be obtained

by a K-dimensional PCR model, since no relevant informa-

tion is left out of the model [10]. The calculation of the

optimal number of principal components is facilitated here,

since an estimate for V̂(X) is assumed to be available, and it

should be closest to the value calculated by:

V̂V ðXÞ ¼

Xmin I ; Jð Þ

k¼Kþ1

k̃kK

I � K � 1ð Þ J � Kð Þ ð8Þ

where k̂K denotes the K-th eigenvalue of (X̃TX̃).
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