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We  review and demonstrate how an empirical Bayes method, shrinking a protein’s sample

variance towards a pooled estimate, leads to far more powerful and stable inference to detect

significant changes in protein abundance compared to ordinary t-tests. Using examples from

isobaric mass labelled proteomic experiments we show how to analyze data from multiple

experiments simultaneously, and discuss the effects of missing data on the inference. We

also  present easy to use open source software for normalization of mass spectrometry data

and inference based on moderated test statistics.
© 2015 The Authors. Published by Elsevier B.V. on behalf of European Proteomics

Association (EuPA). This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1.  Introduction

Detecting significant changes in protein abundance is a funda-
mental task in mass-spectrometry based experiments when
trying to compare treated to untreated cells, wildtypes to
mutants, or samples from diseased to non-diseased subjects.
The statistical inference for proteomic data in these settings
is usually based on standard 2-sample t-tests, comparing the
measured relative or absolute abundances for each peptide
or protein across the conditions of interest. However, sample
sizes are often small, sometimes as small as 4 or 8 samples
total, which result in great uncertainty in the sample vari-
ability estimates. Since these estimates are used in the test
statistics to assess the statistical significance of the observed
fold change, proteins exhibiting a large fold change are often
declared non-significant because of a large sample variance,
while at the same time small observed fold changes might
be declared statistically significant, because of a small sample
variance.
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Additional methods to assess biological and technical
sources of variability have been proposed [1–6], including
methods to analyze data from multiple experiments simulta-
neously. For case–control iTRAQ experiments, Oberg et al. [7]
and Hill et al. [8] extended a linear mixed effects approach
originally proposed by Kerr and Churchill [9,10] as analysis
of variance for gene expression studies. This mixed model
adjusts for potential differences due to channel effects, load-
ing, mixing, and sample handling. The parameter of interest
in the model is the interaction between protein and group sta-
tus, with a statistically significant result indicating differential
expression (abundances) between cases and controls. One  of
the noteworthy features of this approach is that it simulta-
neously estimates protein relative abundance and assesses
differential expression, albeit with substantial computational
cost due to the numerical complexity of optimizing the like-
lihood and estimating a rather large number of parameters.
Herbrich et al. [11] demonstrated that estimating protein
abundances using median sweeps reduces computational
cost substantially, and is as efficient yet more  robust than
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protein abundance estimation procedures based on linear
mixed effects models.

An implicit assumption in the approach of Oberg et al.
[7] and Hill et al. [8] is that the biological variability is the
same for all proteins identified and quantified. Though “all
models are wrong, but some are useful” [12], incorrect model
assumptions can lead to a loss in power even if no bias is
incurred. This was for example observed in gene expression
studies when LIMMA  (“Linear Models for Microarray Data”) [13]
was introduced as an empirical Bayes approach that specifi-
cally allowed for a realistic distribution of biological variances,
compared to the models of Kerr and Churchill [9,10], which
assumed constant variability. The statistical trick in LIMMA
is to use the full data to shrink the observed sample vari-
ances towards a pooled estimate. This results in far more
stable and powerful inference compared to ordinary t-tests
particularly when the number of samples is small [13], yet still
allows for a distribution of variances. LIMMA arguably is the
contemporary analytical standard for gene expression experi-
ments, as evidenced by over 6000 citations in the last ten years
(http://scholar.google.com). LIMMA  has also been sporadically
used in the context of proteomic experiments [14–19], but is
far from being regarded as the analytical standard. This is sur-
prising since proteomic experiments often have somewhat
small sample sizes, and for those the potential gains of an
empirical Bayes procedure are highest. One possible explana-
tion for this phenomenon (besides being originally developed
for a different genomic application) might be that LIMMA has
been implemented as a Bioconductor package in the language
R, a statistical environment the proteomics community only
recently started to embrace [20–26].

In this manuscript we  use examples from quantitative pro-
teomic experiments using isobaric mass tags to demonstrate
how better results in case–control studies can be achieved by
using the LIMMA  moderated test statistics. We  show how to
analyze data from multiple experiments simultaneously, and
discuss the effects of missing data on the inference. We  give
sufficient detail for the statistically inclined reader to under-
stand what happens “under the hood” of this empirical Bayes
approach, and also present easy to use open source software
for the practitioner to carry out the normalization of these
mass spectrometry data, and to readily obtain the inference
from moderated test statistics.

2.  Materials  and  methods

2.1.  Sample  description

The data stem from two Trypanosoma brucei transgenic cell
lines overexpressing either TbHslV-wild type or TbHslV-
mutant protease. The T. brucei mitochondrion contains a
proteasome-like ATP-dependent protease named TbHslVU
that plays a critical role in regulating the timing of mitochon-
drial DNA replication [27]. Previous experiments suggested
that TbHslVU controls the timing of kDNA synthesis by degrad-
ing “positive regulator of replication” [27,28]. To search for
TbHslVU substrates its catalytically active subunit (denoted
as TbHslV-wt)  and its catalytically dead mutant (denoted as
TbHslV-mt)  were fused to the tandem affinity purification

(TAP) tag. TAP-tagged TbHslV-wt or TbHslV-mt overexpress-
ing cell lines were generated and the overexpressed proteins
were purified using a TAP protocol adapted from Ringpis [29].
TbHslV-wt and TbHslV-mt were performed in four independent
biological replicates.

Quantitative mass spectrometry was used to identify pro-
teins that are associated with overexpressed and purified
TbHslV-mt but not with TbHslV-wt treated similarly; since
the latter binds and degrades its substrates. Proteins were
digested with trypsin, labelled using the eight-plex iTRAQ iso-
baric mass tags (ABSciex) and analyzed using tandem mass
spectrometry on an LTQ Velos Orbitrap interfaced with an
Eksigent 2D NanoLC as previously described [11,30,31], except
mass tagged peptides were fractionated by basic reverse phase
chromatography [32]. Peptides were identified using Proteome
Discoverer v1.4 (Thermo Scientific, San Jose, CA) and Mascot
v2.2 (Matrix Sciences). Software defaults were used to control
the false discovery rate (FDR) and only peptides spectra with
less than 1% FDR and less than 30% isolation interference were
included in analysis.

Protein log 2 relative abundances were estimated using the
method of Herbrich et al. [11]. In this procedure, a logarith-
mic  transformation of the reporter ion intensities is employed
since systematic effects and variance components are usually
assumed to be additive on this scale [7,8]. The log 2 reporter
ion intensities for each spectrum are “median-polished” by
subtracting the spectrum median log 2 intensity from the
observed log 2 intensities. The relative abundance estimate
for a particular protein is calculated as the median of these
residuals, from all reporter ion intensity spectra belonging to
this protein. Corrections for differences in amounts of mate-
rial loaded in the channels and sample processing are carried
out by subtracting the channel median from the relative abun-
dance estimate, normalizing all channels to have median zero.

2.2.  Statistical  inference

2.2.1.  Two  group  comparisons
To detect differentially expressed proteins in a balanced pro-
teomic experiment with n cases (log 2 relative abundances X1p,
. . ., Xnp for protein p) and n controls (log 2 relative abundances
Y1p, . . .,  Ynp), inference is typically based on a 2-sample t-test
for each protein p, with test statistic

tp = estimated log fold change
estimated standard error

= Xp − Yp

sp

√
2/n

, (1)

where Xp and Yp are the group mean log 2 relative abundances,
and

sp =

√∑
i
(Xip − Xp)

2 +
∑

i
(Yip − Yp)

2

2n − 2
(2)

is the within-group sample standard deviation. For each pro-
tein, a p-value is then calculated referring the test statistic
tp to a t-distribution with dp = 2 × n − 2 degrees of freedom as
null distribution. For the above the log 2 relative abundances
are assumed to be normally distributed with equal variance in
each group, although t-tests are robust to departures from the
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