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A B S T R A C T

Glioma stem-like cells (GSCs) are hypothesized to provide a repository of cells in tumors that can self-
replicate and are radio- and chemo-resistant. GSC lines, representing several glioma subtypes, have been
isolated and characterized at the transcript level. We sought to characterize 35 GSC lines at the protein
level using label-free quantitative proteomics. Resulting relative fold changes were used to drive
unsupervised hierarchical clustering for the purpose of classifying the cell lines based on proteomic
profiles. Bioinformatics analysis identified synoviolin, serine/arginine-rich splicing factor 2, symplekin,
and IL-5 as molecules of interest in progression and/or treatment of glioma.
ã 2015 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Primary brain tumors comprise 3% of all cancer diagnoses, and
of these, GBM [World Health Organization (WHO) grade IV
astrocytoma] makes up over half (52%) of all cases [1,2]. Despite
an aggressive therapeutic regimen including surgical resection
followed by some combination of chemotherapy and radiotherapy,
the disease is ultimately fatal, with median survival only slightly
over a year after diagnosis [2–6]. A deeper molecular-level
understanding of the origins of GBM is critical in the quest to
discover new therapeutic targets for this disease that few survive.

One factor that contributes to poor clinical outcome is the
presence of a small subpopulation (<1%) of cells within the tumor
which are both radio- and chemotherapy resistant [7–11]. These
cells, termed glioma stem cells or glioma stem-like cells (GSCs) are
postulated to provide a repository of cells for tumor recurrence [7–
11]. GBM has been classified into several subgroups based upon
patterns of gene expression [12–16], and this same classification
scheme may be applied to GSCs. According to The Cancer Genome
Atlas (TCGA), the GBM subgroups are classical, proneural, and

mesenchymal [12–16]. Tumors themselves are not homogeneous;
a recent study of biopsy samples revealed that cells from different
regions of the same tumor show different molecular phenotypes
[17]. Therefore, it is critical to understand GSCs at amolecular level
in order to design an effective treatment regimen for GBM.

The purpose of our study was to perform a proteomic
comparison of 35 GSCs, derived from patient tumors, in
order to gain a deeper understanding of protein-level changes
associated with GSCs and to identify potential therapeutic targets.
The origin of GSCs has yet to be definitively determined, although
glioma may originate from neural stem cells [18–22], glial cells
[23], oligodendrocyte precursor cells [24], neurons [25] or
astrocytes [25,26]. Given the difficulty in identifying an appropri-
ate control for GSCs, each cell line was quantified relative to a
mixed control sample containing an equal amount of protein from
each cell line. The Catalog of Somatic Mutations in Cancer
(COSMIC) database [27–31] was queried in order to compare
our results with genome-level studies of patient tumor samples,
especially for those proteins with no previous association to GBM.
A combination of the Database for Annotation, Visualization and
Integrated Discovery (DAVID) webtool [32,33] and Ingenuity
Pathway Analysis (IPA) was used to determine affected pathways
for each cell line, and IPA was used to determine predicted
upstream regulators. Unsupervised hierarchical clustering of
proteins and of upstream regulators was used to determine similar
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behavior between the cell lines. We identified symplekin (SYMPK)
as a protein whose expression is significantly changed across
several of our cell lines [34]. In addition, we identified novel
putative upstream regulators interleukin-5 (IL5) and synoviolin
(SYVN1). From a cluster of proteins which demonstrated
lower expression in mesenchymal stem cells, we identified
serine/arginine rich splicing factor 2 (SRSF2) as an upstream
regulator.

2. Materials and methods

2.1. Chemicals and Reagents

LC-MS grade acetonitrile and water were purchased from J.T.
Baker (Philipsburg, NJ). Formic acid and RIPA buffer were
purchased from Pierce (Rockford, IL). Iodoacetamide (IAA),
dithiothreitol (DTT), triethylammonium bicarbonate (TEAB) were
obtained from Sigma–Aldrich (St. Louis, MO). Sequencing grade
trypsin was purchased from Promega (Madison, WI), and PMSF
from CalBiochem (Darmstadt, Germany). All chemicals were used
without further purification.

2.2. Cell culture conditions

Isolation of GSCs from patient tumors was performed as
previously described [19] in accordance with the institutional
review board of The University of Texas M.D. Anderson Cancer
Center, and are named in the order they were acquired. GSCs were
cultured according to previously published methods [19,35].
Upon dissociation of cells, GSCs were enriched using CD133 via
flow cytometry. CD133+ cells are grown in serum-free medium
as neurospheres as previously described [21,22]. All cell lines
were tested to exclude the presence of Mycoplasma infection.

2.3. Proteomic analysis of GSCs

Sample preparation and nanoLC–MS/MS analysis of GSCs was
performed as previously described [34]. Briefly, protein (100mg)
isolated from 2�106 cells was reduced (TCEP) and alkylated
(iodoacetamide). After precipitation using four volumes (440mL)
of ice cold acetone for 2h at �20 �C, protein was resuspended in
8M urea (12.5mL) and digested with trypsin (10mg in 87.5mL of
TEAB buffer) for 24h at 37 �C.

Chromatographic separation and mass spectrometric analysis
was performed with a nanoLC chromatography system (Easy-nLC
1000, Thermo Scientific), coupled on-line to a hybrid linear
iontrap–Orbitrap mass spectrometer (Orbitrap Elite, Thermo
Scientific) through a Nano-Flex II nanospray ion source (Thermo
Scientific) as previously described [34]. Briefly, samples were
analyzed in groups of block-randomized triplicates [36], with three
GSCs and M37 (mixed control sample consisting of equal protein
from 37 cell lines) in each group. Each block consisted of one
technical replicate of each GSC and theM37; the run order for each
block was randomized so that data acquisition was not performed
in the same order for any of the three blocks. A total of three blocks
was acquired for each group of samples, resulting in acquisition of
three data files for each GSC and M37. Peptides (1mg cell protein
digest) were separated by gradient elution using a C18 column
(10 cm�75mm ID,15mm tip, ProteoPep II, 5mm, 300Å, New
Objective) using a 4h gradient. Mobile phases were 0.1% formic
acid in water (A) and 0.1% formic acid in acetonitrile (ACN; B). All
nanoLC–MS/MS datawere acquired using XCalibur, version 2.7 SP1
(Thermo Fisher Scientific) using a Top 10 HCD method as
previously described [34]. The data files have been deposited into
ProteomeXchange repository (PXD001890) [37–40].

2.4. Bioinformatic analysis

Data files were analyzed as previously described [34]. Instru-
ment .raw files for each experimental block were imported into
Progenesis LC–MS software (version 18.214.1528, Nonlinear
Dynamics) for m/z and retention time alignment. This process
combines observations for all samples in the block as single
measurements for each peptide feature, which allows the best
peptide spectrum match for a particular peptide feature to be
projected onto all runs within the experimental block. Next, the
top 5 spectra for each feature were exported as a combined .mgf
file for database searching in PEAKS [41–43] (version 6, Bioinfor-
matics Solutions Inc., Waterloo, ON) and Mascot (version 2.3.02,
Matrix Science). Database searches were performed as previously
described [34] (10ppmparent ion tolerance, 0.025Da fragment ion
tolerance, fixed carbamidomethyl cysteine, variable oxidation
(methionine), deamidation (asparagine, glutamine) and phosphor-
ylation (serine, threonine, tyrosine), with a maximum of three
post-translational modifications per peptide; trypsin with two
missed cleavages). Peptide-spectrummatches were then exported
from PEAKS as a .xml file and re-imported into Progenesis LC–MS
in order to assign peptide-spectrum matches to features. After
filtering to remove peptide-spectrum matches below 95% peptide
probability (as calculated in PEAKS, using the Peptide
Prophet algorithm [44]), manual conflict resolutionwas performed
by removing lower scoring peptide spectrum matches in order to
ensure that a single unique peptide sequence was assigned to each
feature. Feature intensities were normalized using the default
normalization algorithm in Progenesis LC-MS (http://www.non-
linear.com/progenesis/qi-for-proteomics/v2.0/faq/how-normal-
isation-works.aspx), and normalized peptide intensity data was
exported and filtered to remove non-unique peptides,methionine-
containing peptides [45], and all modified peptides except those
containing cysteine carbamidomethylation. Peptide intensities
were imported into DanteR (version 0.1.1) [46,47] for protein
quantification as previously described [34]. Briefly, intensities for
peptides with the same sequence were combined into a single
entry by summation, in order to correct for MS1-level misalign-
ment and to fold together measurements representing multiple
charge states of the same peptide. The resulting peptide intensities
were log2-transformed and combined to generate protein abun-
dances (RRollup) without considering proteins with a single
peptide assignment. Default settings were used: 50% minimum
presence of at least one peptide, minimum dataset presence 3,
p-value cutoff of 0.05 for Grubbs’ Test, minimum of 5 peptides for
Grubbs’ Test. A one-way ANOVA was performed for each
experimental block, relative to M37, to obtain estimated fold
changes, and p-values were corrected for multiple testing [48]. In
order to compare results across experimental blocks, estimated
protein fold changes from all experimental blocks were standard-
ized to correct for analytical differences, and the resulting
standardized fold changes were imported into Ingenuity Pathway
Analysis. Resulting z-scores for upstream regulators and biological
and disease functions for all cell lines were exported and collated.
After filtering to remove entries with no missing values,
unsupervised hierarchical clustering of proteins was performed
using a Euclidean distance metric and a Ward linkage metric in
Mass Profiler Pro (Agilent, Santa Clara, CA). After filtering to
remove entries with <20% missing values, unsupervised hierar-
chical clustering of upstream regulators was performed using a
Euclidean distancemetric and an average linkagemetric in DanteR.

For additional analysis of biological function, Gene Ontology
(GO) analysis was performed using the Database for Annotation,
Visualization and Integrated Discovery (DAVID) webtool [32,33].
For each cell line, the proteins were separated into lists of proteins
which were increased and decreased relative to mixed control.
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