Food Chemistry 120 (2010) 327-331

Contents lists available at ScienceDirect

Food Chemistry

journal homepage: www.elsevier.com/locate/foodchem

Analytical Methods

Fluorometric determination of hydrogen peroxide in milk by using a Fenton reaction system

M.E. Abbas^a, Wei Luo^a, Lihua Zhu^{a,*}, Jing Zou^b, Heqing Tang^{a,*}

^a College of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China ^b School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430074, People's Republic of China

ARTICLE INFO

Article history: Received 13 March 2009 Received in revised form 18 May 2009 Accepted 12 October 2009

Keywords: Hydrogen peroxide Fluorometry Coumarin Fenton reaction Milk

ABSTRACT

A simple and highly sensitive fluorometric method is proposed for the determination of H_2O_2 in milk samples. In this method, non-fluorescent coumarin is oxidised to highly fluorescent 7-hydroxycoumarin by hydroxyl radicals ('OH) generated in a Fenton reaction, and the oxidation product has strong fluorescence with a maximum intensity at 456 nm and can be used as a fluorescence probe for H_2O_2 . Under the optimal conditions $(2.5 \times 10^{-4} \text{ mol L}^{-1} \text{ iron(II)} \text{ ions}, 4.0 \times 10^{-4} \text{ mol L}^{-1} \text{ coumarin}$, solution pH 3.0, reaction time 9 min, and excitation at 346 nm), the proposed method presents wide linear responses between the fluorescence intensity and H_2O_2 concentration in a wide range from 2.0×10^{-8} to $2.0 \times 10^{-5} \text{ mol L}^{-1}$, with a detection limit (S/N = 3) of $5.0 \times 10^{-9} \text{ mol L}^{-1}$. After possible interferences are evaluated for a series of chemical substances, the present method has been applied to the determination of hydrogen peroxide in milk with satisfactory results.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Hydrogen peroxide (H_2O_2) is widely used in the fields of foods, pharmaceuticals, dental products, textiles, environmental protection, and it is also involved in advanced oxidation processes (AOPs) and various biochemical processes (Demirkol, Mehmetoglu, Qiang, Ercal, & Adams, 2008; Luo, Abbas, Zhu, Deng, & Tang, 2008; Nogueira, Oliveira, & Paterlini, 2005; Zhang, Mao, & Cai, 2000). In many countries, H_2O_2 has been accepted as a food additive of controlling the growth of microorganisms, bleaching (Toyoda, Ito, Iwaida, & Fujii, 1982), removing glucose from dried eggs and controlling microbial growth in stored milk before cheese-making (EU Risk Assessment Report, 2003).

Although H_2O_2 is the primary chemical for sterilization of plastic packaging material used in aseptic systems, the FDA regulations specify that a maximum concentration of 35% (w/w) H_2O_2 may be used for sterilizing food contact surface because the use of H_2O_2 at high concentrations is unfavourable to the lowering of the residual H_2O_2 . In a properly designed aseptic packaging system a good microbicidal effect using H_2O_2 can be achieved and the level of residue can also be effectively controlled (Ansari & Datta, 2003; Hanway, Hansen, Anderson, Lyman, & Rushing, 2005). H_2O_2 is approved in the USA for treating milk and its weight cannot exceed 0.05% of the milk weight. Because an excess of residual H_2O_2 is harmful to humans, the level of residue is required to be effectively controlled within permissible limits. For example, the Ministry of Health and Welfare of Japan forces that H_2O_2 has to be either decomposed or removed from the final products (Toyoda et al., 1982). The FDA regulation limits residual H_2O_2 to 0.5 mg L⁻¹ in finished food packages (Özkan, Kırca, & Cemeroğlu, 2004). In a national survey made in the USA, zero residues were reported in most foods after treatment with H_2O_2 (EU Risk Assessment Report, 2003).

It is known that H_2O_2 creates serious problems (Chen, Yu, Zhou, & Wang, 2007). H_2O_2 is extremely toxic to cells at high concentrations (Wei & Guo, 2007), and it can cause cancer in the duodenum of mouse after it is administered in the drinking water at 0.1% (w/w) and 0.4% (w/w) (Toyoda et al., 1982). In short-term genotoxicity tests, H_2O_2 also gives predominantly positive results (Desesso, Lavin, Hsia, & Mavis, 2000). Therefore, a monitoring of low levels of H_2O_2 in foods is of great importance for health effects are anticipated, and even the monitoring of H_2O_2 in vapour phase is also an important industrial health issue (Bohrer et al., 2008).

Numerous methods have been developed for the determination of H_2O_2 , such as spectrophotometry (Nogueira et al., 2005; Tanner & Wong, 1998; Wei & Wang, 2008), fluorometry (Chen et al., 2007; Sakuragawa, Taniai, & Okutani, 1998), electrochemistry (Zheng & Guo, 2000), and chemiluminescence (Hu, Zhang, & Yang, 2007). Several methods have also been proposed for the determination of H_2O_2 in milk, such as oxygen electrode method (Toyoda et al., 1982), mediator-free amperometric biosensor method (Liang & Mu, 2008), flow injection analysis method (Cerdán, Tortajada,

^{*} Corresponding authors. Tel.: +86 27 87543432; fax: +86 27 87543632.

E-mail addresses: lhzhu63@yahoo.com.cn (L. Zhu), hqtang62@yahoo.com.cn (H. Tang).

^{0308-8146/\$ -} see front matter \circledcirc 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.foodchem.2009.10.024

Puchades, & Maguieira, 1992) and FT-IR method (Sansal & Somer, 1999). It was noticed that H₂O₂ involved in Fenton reaction, which is very important in both laboratories and industries (Perkowski, Jóźwiak, Kos, & Stajszcyk, 2006). In our laboratory, therefore, a spectrophotometric method for the H₂O₂ detection has been proposed on the basis of decolorization of methyl orange in Fenton reaction system (Luo et al., 2008). Because of the characteristics of Fenton reaction, this method has merits of being rapid and simple in the operation. Although this method can be satisfactorily used for practical samples containing H₂O₂ at concentrations ranging from 5.0×10^{-7} to 1.0×10^{-4} mol L⁻¹, the development of more sensitive method is a challenge for a faster determination of H₂O₂ at lower concentrations.

Determination of H₂O₂ in gas-phase using aromatic hydroxylation has been reported. Lee et al. investigated a fluorescence method for determination of gas-phase peroxides by using Fenton reaction and benzoic acid, which was based on the hydroxylation of benzoic acid by 'OH to form the fluorescent product, hydroxybenzoic acid (Lee & Tang, 1994). Similarly, sodium salicylate can also be oxidised by 'OH to produce dihydroxybenzoic acid. Liu et al. developed a high performance liquid chromatography method for determination of gas-phase hydrogen peroxide in ambient air with a linear range from 2.6×10^{-6} to 4.4×10^{-5} mol L⁻¹ (Liu, Steinberg, & Johnson, 2003). However, this method is limited when it was used for the determination of low H_2O_2 concentration. Recently, in our laboratory, coumarin fluorescence probing technique has been used for the detection of OH in aqueous systems (Guan, Zhu, Zhou, & Tang, 2008; Luo et al., 2009). Because of the strong oxidising ability of the Fenton reaction, it was intended to be used to oxidise non-fluorescent coumarin to highly fluorescent 7-hydroxycoumarin, leading to a sensitive fluorometric method for the determination of H₂O₂ in milk. As anticipated, it was confirmed that the newly established method was able to be used for the determination of low H₂O₂ concentration in a linear range from 2.0×10^{-8} to 2.0×10^{-5} mol L⁻¹ with detection limit as low as $5.0 \times 10^{-9} \text{ mol } L^{-1}$.

2. Materials and methods

2.1. Materials

All reagents, such as coumarin (C₉H₆O₂), H₂O₂ (30%), ferrous sulphate (FeSO₄·7H₂O) and trichloroacetic acid (TCA) (CCl₃CO₂H), were of analytical-reagent grade. Double distiled water was used exclusively. Diluted solutions of NaOH and H₂SO₄ were used to adjusted pH. A iron(II) ions stock solution (0.01 mol L^{-1}) was obtained by dissolving 0.278 g FeSO4·7H2O in 100 mL of 0.5 mmol L^{-1} H₂SO₄, and a H₂O₂ stock solution (0.01 mol L^{-1}) was prepared from 30% (w/w) H₂O₂ solution and standardised by titration with KMnO₄ solution (2.3 × 10⁻² mol L⁻¹).

2.2. Apparatus

Spectrofluorometric measurements were performed on a FP-6200 fluorescence spectrophotometer (Jasco, Japan). Each measurement was repeated three times to ensure the reproducibility, and the data were averaged. The excitation wavelength was set at 346 nm, and the emission wavelength was set at 456 nm.

2.3. Sample preparation and analysis procedure

Four different milk samples (A, B, C and D) were commercially obtained from a local supermarket in Wuhan, China. Prior to the determination, 20 mL of 20% (w/w) TCA was added to 20 mL of the milk, followed by stirring for 40 min. Then, the mixture was filtered through a 0.2 µm filter twice, and the obtained solution was used for the analysis of H₂O₂. After the pH was adjusted, 2 mL of the above-prepared solution was added to 3 mL of 6.7×10^{-4} mol L^{-1} coumarin, followed by the addition of 0.1 mL of 1.25×10^{-2} mol L⁻¹ iron(II) ions (the final pH was adjusted to 3). Finally, the mixture was reacted for 9 min and the fluorescence intensity was monitored at 456 nm.

3. Results and discussion

110

3.1. Related reactions in the Fenton system

The Fenton reagent $(iron(II)/H_2O_2)$ makes major contribution in the Fenton reaction, in which iron(II) ions catalyse the reduction of H₂O₂. In more details, highly reactive hydroxyl radicals (•OH) are formed during the reaction of H₂O₂ with iron(II) ions, and the generated hydroxyl radical (OH) can destroy organic compounds due to its high oxidation potential (Perkowski et al., 2006). The mechanism for the Fenton reaction mainly involves the following steps (Georgi et al., 2007):

$$H_2O_2 + Fe^{2+} \rightarrow Fe^{3+} + OH + OH^-$$
(1)

$$H_2O_2 + Fe^{3+} \rightarrow Fe^{2+} + HO_2 + H^+$$
 (2)

$$\mathbf{\dot{O}H} + \mathbf{H}_2\mathbf{O}_2 \to \mathbf{\dot{H}O}_2 + \mathbf{H}_2\mathbf{O} \tag{3}$$

$$\cdot OH + Fe^{2+} \rightarrow Fe^{3+} + OH^{-} \tag{4}$$

$$Fe^{3+} + HO_2 \rightarrow Fe^{2+} + O_2 + H^+$$
 (5)

$$Fe^{2+} + HO_2 + H^+ \rightarrow Fe^{3+} + H_2O_2$$
 (6)

$$HO_2 + HO_2 \to H_2O_2 + O_2 \tag{7}$$

When coumarin is added into the reaction solution, it can be oxidised to 7-hydroxylcoumarin by the generated hydroxyl radical via Eq. (8) (Guan et al., 2008; Ishibashi, Fujishima, Watanabe, & Hashimoto, 2000).

$$Coumarin + OH \rightarrow 7-hydroxylcoumarin$$
(8)

Because coumarin is non-fluorescent and the product 7-hydroxylcoumarin is highly fluorescent, the fluorescence intensity of the reaction solution will be increased in the time course of reaction. Thus, it is possible to correlate the fluorescence intensity of the reaction solution with the concentration of the oxidant H₂O₂. By monitoring the fluorescence intensity of the reaction solution, we have observed that the fluorescence intensity of 7-hydroxylcoumarin at emission wavelength of 456 nm is proportional to the concentration of H₂O₂, leading to the establishment of a new fluorometric method for the determination of H₂O₂.

3.2. Effects of operation parameters on the determination of H_2O_2

The major operational parameters were further investigated to establish a new fluorescent method for the determination of H_2O_2 , and the major parameters were reaction time, pH of reaction solution, initial concentrations of iron(II) ions and coumarin.

3.2.1. Effect of reaction time

The reaction time was investigated at given conditions (pH 3.0, 2.5×10^{-4} mol L⁻¹ iron(II) ions, 4.0×10^{-4} mol L⁻¹ coumarin, 2.0×10^{-6} or 2.0×10^{-5} mol L⁻¹ H₂O₂). Fig. 1 shows the profiles of the fluorescence intensity of the solution during the reaction. At H_2O_2 concentrations of both and 2.0×10^{-6} and 2.0×10^{-5} mol L⁻¹, the fluorescence intensity is increased with the increasing

Download English Version:

https://daneshyari.com/en/article/1187004

Download Persian Version:

https://daneshyari.com/article/1187004

Daneshyari.com