

Available online at www.sciencedirect.com

Food Chemistry

Food Chemistry 106 (2007) 852-858

www.elsevier.com/locate/foodchem

Analytical, Nutritional and Clinical Methods

Estimation of minerals, nitrate and nitrite contents of medicinal and aromatic plants used as spices, condiments and herbal tea

M.M. Özcan*, M. Akbulut

Department of Food Engineering, Faculty of Agriculture, University of Selcuk, 42031 Konya, Turkey

Received 31 May 2006; received in revised form 20 June 2007; accepted 23 June 2007

Abstract

In this study, the minor and major mineral contents of 31 kinds of medicinal and aromatic plant collected from the south region of Turkey in 2004 year were established by inductively coupled plasma atomic emission spectrometry (ICP-AES). The samples were composed of Al, Ca, Fe, K, Mg, Na, P and Zn. The highest mineral concentration were measured between 57.70–2962.74 mg/kg Al, 1160.04–16452.88 mg/kg Ca, 44.83–1799.5 mg/kg Fe, 3570.73–27669.72 mg/kg K, 477.17–4313.59 mg/kg Mg, 1102.62–20912.33 mg/kg Na, 443.60–9367.80 mg/kg P and 7.18–48.36 mg/kg Zn. The highest values of Ca, K and P were established in *F. vulgare* (bitter fennel) (16452.88 mg/kg), *O. minumum* (basil) (27669.72 mg/kg) and *F. vulgare* (bitter fennel) (9367.80 mg/kg), respectively. The heavy metal contents were determined too low in all samples.

Nitrate and nitrite contents of samples were analysed using the phenolicdisulphonic acid method and the diazotisation method of the American Public Health Association, respectively. These nitrate and nitrite values were established to vary widely depending on the different plant species. While nitrate contents were high in most cases and varied from 12.15 mg/kg lime flover (*Tilia corata*) to 238.85 mg/kg myrtle (*M. communis*), nitrite contents were established between 3.69 mg/kg sesame (*S. indicum*) to 52.70 mg/kg basil (*O. minumum*). Generally, nitrate contents of samples were found very high compared with nitrite values. © 2007 Elsevier Ltd. All rights reserved.

Keywords: Medicinal and aromatic plant; Minerals; Nitrate and nitrite contents

1. Introduction

Edible wild and culture plants are found in countries with rather varied climates. Plants greens and seeds were important foods in the traditional diet of the first European farmers. They consumed plants that today are no longer generally considered for nutrition (Guil, Martirey, & Irosa, 1998; Wells, 1984). Some modern culture still consume wild plants as a normal food source, obtaining fairly good amounts of several nutritients, and it is widely accepted that leafy green vegetables are significant nutritional sources of minerals (Kuhnlein, 1990). The main contrast for the nutritional exploitation of these species is the presence of certain anti-nutritional and toxic substances such as

* Corresponding author. *E-mail address:* mozcan@selcuk.edu.tr (M.M. Özcan). nitrates, oxalate, and saponin (Gupta & Wagle, 1998). Nevertheless, these principles are also found in commercial leafy green vegetables (Guil, Torija, & Rodriguez-Garcia, 1997).

Consumers are convinced that they need more and better nutrients than their diets provide. Nutritional deficiency may lead to diseases and nutritional deficiencies. Dietary supplements which increase the total dietary intake of one or more essential vitamin or minerals are very common (Ivey & Elmen, 1986; Obiajunwa, Adebajo, & Omobuwajo, 2002). Mixtures of medicinal plants are prescribed by the traditional healers for diseases ranging from common cold to maloria, arthritis, ulcers, etc. (Obiajunwa et al., 2002). Minor elements have very important functions and it is believed a key component of proteins such as haemoprotein and haemoglobin which play role in biochemical functions and essential enzyme system even in low doses. These

^{0308-8146/\$ -} see front matter \odot 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.foodchem.2007.06.045

elements are present in plants due to industrial development and pollution of biosphere (Chen, 1992; Hay, 1984; Tolonen, 1990). Most wild plants leaves are used in salad and meat product (Wetherilt, 1992). Many countries are rich in plants contained mineral and other nutrition elements (Freiberger et al., 1998; Khader & Rama, 1998; Yıldırım, Dursun, & Turan, 2001). Essential and trace element contents of 20 medicinal plants were determined in Niger. These elements were detected in concentrations between 0.182 and 77.400 ppm (Obiajunwa et al., 2002). Turan, Kordali, Zengin, Dursun, and Sezen (2003) reported macroand micro-element contents of some wild culinary herbs in East Anatolian Region of Turkey. Also in other study, mineral contents of 32 plants used as condiments in Turkey were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES) (Özcan, 2004).

Herbs and spices, grown wildly in various regions of the world, have been used for several purposes since ancient times. Several uses of these plants are known for culinary purposes. In addition, they are also used in folk medicine as antiscorbutic, antispasmodic, tonic, carminative agents against bronchitis, ulcers and as diuretics, depuratives, vermifurges. Also, some species are used as tea, flavouring agents in several regions (Baytop, 1984; Koedam, 1986; Yeşilada & Ezer, 1989). The nutritional and medicinal properties of these plants may be inter-link through phytochemicals, both nutrient and non-nutrient (Ranhotra, Leinen, Vinas, & Lorenz, 1998). Several studies have been carried out on edible wild plants (Chen, 1992; Guil et al., 1998; Özcan & Akgul, 1998; Özcan, Akgul, Bağci, & Dural, 1998). But, limited studies were carried out on mineral, nitrate and nitrite contents of medicinal and aromatic plants growing in Turkey. So, it may be useful to know their content in the main edible plants collected for nutritional purposes in Turkey. The aim of this work was to establish the mineral, nitrate and nitrite contents of several herb and spices used for several purposes in Turkey.

2. Materials and methods

2.1. Materials

The plants used in experiment were collected from the south region of Turkey in June and July 2004 year. Sumac was harvested in September 2004. Blackpeper, cinnamon and clove were bought from local market. Fruit and seeds were collected during mature stage. Sampling technique was performed as replication. The dried materials were then ground in a mortar and the ground material sealed in bottles for storage until analysis. The common, scientific and family names of the plants are given in Table 1.

2.2. Methods

2.2.1. Determination of mineral contents

About 0.5 g dried and ground sample was put into a burning cup and 15 ml pure HNO_3 added. The sample

was incinerated in a MARS 5 Microwave Oven at 200 °C and dissolved ash was diluted to a certain volume with ultra pure water. Concentrations were determined with an ICP-AES (Skujins, 1998).

Working conditions of the ICP-AES were

Instrument	ICP-AES (Varian-Vista 0.7– 1.2 kW); (1.2–1.3 kW for axial)
Plasma gas flow rate (Ar) Auxiliary gas flow rate (Ar)	10.5–15 l/min (radial); 15 l/ min (axial) 1.5 l/min
Viewing height Copy and reading time Copy time	5.12 mm 1–5 s (max 60 s) 3 s (max 100 s)

Table 1

Medicinal	and	aromatic	plants	used	in	experiment

General	Botanical name	Family	Used parts
name			
Ajowan	Carum copticum	Umbelliferae	Fruit
Anise	Pimpirella anisum L.	Umbelliferae	Fruit
Balm	Melissa officinalis	Labiatae	Leave
Basil	Ocimum minumum	Labiatae	Leave + flower
Bitter	Foeniculum vulgare ssp.	Umbelliferae	Fruit
fennel	piperitum		
Bitter	F. vulgare ssp.piperitum	Umbelliferae	Leave
fennel	~		
Black	Nigella sativa	Ranunculaceae	Seed
cumin			
Black	Piper nigrum	Piperaceae	Fruit
pepper		•	
Calamus	Acorus calamus	Araceae	Rhizom
Camomile	Matricaria chamomilla	Compositae	Flower
Caper	Capparis ovata	Capparaceae	Bud
Capsicum	Capsicum frutescens	Solanaceae	Fruit
Cinnamon	Cinnamomum	Lauraceae	Bark
	zeylanicum		
Clove	Syzygium aromaticum	Myrtaceae	Flower
Cumin	Cuminum cyminum	Umbelliferae	Fruit
Fennel	F. vulgare	Umbelliferae	Fruit
Laurel	Laurusnobilis	Lauraceae	Leave
Lime flower	Tilia cordata	Tiliaceae	Leaf + flower
Liquorice	Glycyrrhiza glabra L.	Leguminasae	Root
Mint	Mentha piperita L.	Labiatae	Leave
Mustard	Brassica alba	Cruciferae	Seed
Myrtle	Myrtus communis	Myrtaceae	Leave
Pickling	Echinophora tenuifolia	Umbelliferae	Leave
herb			
Rosemary	Rosmarinus officinalis	Labiatae	Leave
Sage	Salvia aucheri	Labiatae	Leave
Sage	Salvia fruticase L.	Labiatae	Leave
Savory,	Satureja hortensis	Labiatae	Leave
sater			
Sesame	Sesamum indicum	Pedaliaceae	Seed
Sumac	Rhus coriaria	Aracordiaceae	Fruit
Thyme (black)	Thymbra spicata L.	Labiatae	Flower + leave
(black) Wormwood	Artemisia absinthium L.	Compositae	Flower

Download English Version:

https://daneshyari.com/en/article/1190014

Download Persian Version:

https://daneshyari.com/article/1190014

Daneshyari.com