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a  b  s  t  r  a  c  t

Paper  develops  a perturbation  theory  for  description  of  ion  motion  in  quadrupole  radio  frequency  (RF)
field.  First  order  corrections  for the  ion  phase  coordinates  caused  by  field  perturbations  over  one  period
of the  RF  field  are  derived.  Transformation  matrix  of  the  phase  coordinates  over  one  RF period  is  obtained
and stability  parameter  of  the  perturbed  ion  motion  is  defined  in  the  first  order  approximation.  Results
are  applied  for  investigation  of  stability  diagram  of  ion  motion  in  a quadrupole  mass  filter.  Boundaries
of  stability  are  defined  in  linear  approximation  and  resolving  power  dependence  from  the  slope  of  the
operating  line  is obtained.  In  contrast  to previously  known  results  current  approach  allows  obtaining
corresponding  dependences  in semi  analytical  form  expressed  in  terms  of  unique  solutions  of Mathieu
equation  at the  tip of  stability.
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1. Introduction

Over half century have passed since invention by Paul et al. [1]
of mass filtering principles of quadrupole radio frequency fields. By
now this technique found wide range of applications in mass spec-
trometry. Quadrupole mass filters are routinely used as stand alone
mass analyzers and as a part of tandem instruments. Principles of
quadrupole operation are well investigated theoretically and by
means of computer simulations [2].  Experimental practice shows
that reliable quadrupole operation sets rather high requirements on
machining and assembling accuracy of electrode system [3].  Ideal
quadrupole field, for which Mathieu equation theory applies, is only
realized in a system of infinite rods of ideal hyperbolic shape. Apart
from few exceptions quadrupoles are made of rods with circular
cross section and contain field distortions. Even when hyperbolic
rods are used, field inside quadrupole is inevitably distorted due
to machining and assembling inaccuracies and by fringing fields.
Influence of those distortions on quadrupole operation, although
minimized in practical devices, is not completely clear as some
recent experiments indicate [4].  Also comparatively small periodic
perturbations of power supply result in considerable influence on
quadrupole operation [5].

Influence of small field perturbation on operation of a
quadrupole mass filters can be investigated by means of pertur-
bation theory. Present paper is the first step in development of
such theoretical approach and has a target to set up the basis of
the method. Because of big volume of associated mathematics this
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paper deals with the simplest case of ion motion in a mass filter
with pure quadrupole field, and perturbation is a shift of ion motion
parameters from the tip of stability. Although this case was  investi-
gated previously numerically, the method which will be developed
in this paper has general applicability and will be used later for
description of other types of perturbations.

2. Ion motion equations. Principles of mass filtering

Electrode system of the quadrupole mass filter consists of four
parallel rods of hyperbolic cross section arranged symmetrically
around common axis (see Fig. 1). With appropriate power sup-
ply (positive phase to the pair of opposite rods in X direction, and
negative at Y rods) a quadrupole field appears in the inner volume
between the rods:

˚(x, y) = [U + V cos ˝(t  − t0)] · x2 − y2

r2
0

. (1)

Here U and V are constant (DC) part and amplitude of the variable
radio frequency (RF) components of periodic power supply on the
rods,  ̋ and t0 are frequency and initial phase of the RF supply, and
r0 is so-called, “field radius”, which is the radius of the inscribed
circle between the rods. Equations of motion for ion of mass m and
charge e in the field of Eq. (1) are Mathieu equations:

d2x

d�2
+ (a + 2q cos 2�) · x = 0, (2.a)

d2y

d�2
− (a + 2q cos 2�) · y = 0. (2.b)
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Fig. 1. Electrode system for a quadrupole mass filter with hyperbolic electrodes and
potentials of electrodes for generating quadrupole field between rods.

Here dimensionless parameters are used

� = ˝

2
(t − t0), a = 8eU

m˝2r2
0

, q = 4eV

m˝2r2
0

. (3)

Except from regions of fringing field motion along the
quadrupole axis in Z direction happens with constant velocity and
is not considered here.

Mass filtering in such device takes place when parameters (3) lie
near values, that correspond to the tip of the first stability region:
a1 = 0.236993 and q = 0.705996. This point is an intersection of two
stability boundaries of motion along X and Y directions (see Fig. 2).
For any fixed power supply voltages parameters (3) ions of differ-
ent mass have parameters that appear on the same “operating line”
defined by equation a = 2�q. Selecting appropriate value of param-
eter � = U/V operating line can be located just below the tip of the
first stability region (see Fig. 2). In this case only ions of particular
mass range that falls between the boundaries of stability will pass
the filter. Ions of different mass will be rejected to the rods either
in X or Y direction due to increase of vibration amplitude.

Fig. 2. First region of stability of ion motion in a quadrupole mass filter. Regions of
unstable motions are shown by grey color. Dotted lines are curves of equal stability
parameter  ̌ with step 0.1. Solid lines are boundaries of stability.

3. Matrix method for ion motion description

Solutions of Eqs. (2.a) and (2.b) can be obtained by means of
Mathieu equation theory, which is well developed [6].  But for our
purposes matrix method [7–9] appears to be most convenient. In
particular this method applies also in cases when periodic power
supply is not sinusoidal. In this method ion motion is characterized
by coordinated of ion at particular phase of the RF supply at each
period (stroboscopic coordinates). Let us consider first of Eqs. (2.a)
and (2.b), i.e. equation of motion along X direction. Stroboscopic
coordinates at the beginning of each RF cycle are defined as follows:

xn = x(n�), vn = x′(n�) (4)

Here x′ stands for derivative of coordinate over dimensionless
time variable �, � is the RF period in dimensionless units and n =
0, 1, 2 . . . – is the period number. For a linear equation (2.а)  solution
at other values of the RF phase � can be expressed in terms of two
independent solutions u1(�) and u2(�) as follows

x(n� + �) = xn · u1(�) + vn · u2(�). (5)

Here we introduced a new variable � according with �=n�+� so
that new variable spans over a single RF cycle 0 ≤ � ≤ �. Derivatives
over variable � are equal to corresponding derivatives over � so that
Eqs. (2.a) and (2.b) are the same when using new variable. “Special”
solutions are defined by the following initial conditions

u1(0) = 1; u′
1(0) = 0 and u2(0) = 0; u′

2(0) = 1. (6)

Coefficients of motion Eqs. (2.a) and (2.b) are periodic and inde-
pendent of the cycle number n. That is why  special solutions are
the same when computed from the beginning of each cycle. Thus
Eq. (5) applies to any RF cycle, which is advantage of this repre-
sentation of ion trajectory. Velocity of ion is defined from Eq. (5) as
follows

v(n� + �) = xn · u′
1(�) + vn · u′

2(�). (7)

From Eqs. (5) and (7) one can derive recurrence relations
between ion phase coordinates at the beginning and end of each
RF cycle in the form of matrix equation(

xn+1

vn+1

)
=
(

m11xn + m12vn

m21xn + m22vn

)
= M ·

(
xn

vn

)
, (8)

where “monodromy” matrix M is calculated from values of special
solutions at the very end of the RF cycle:

M =
[

m11 m12

m21 m22

]
=
[

u1(�) u2(�)

u′
1(�) u′

2(�)

]
. (9)

It follows from recurrence relation (8) that phase coordinates at
the beginning of each RF cycle can be expressed in terms of initial
phase coordinates at the beginning of the first cycle using powers
of monodromy matrix:(

xn

vn

)
= Mn ·

(
x0

v0

)
. (10)

For matrices of size 2 × 2 powers are calculated analytically [9]
as follows

Mn =
∣∣∣∣ cos �ˇn + A sin �ˇn B sin �ˇn

−� sin �ˇn cos �ˇn − A sin �ˇn

∣∣∣∣ , (11)

where

A = m11 − m22

2 sin �ˇ
,  B = m12

sin �ˇ
,  � = −m21

sin �ˇ
. (12)
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