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a  b  s  t  r  a  c  t

The  ideal  Penning  trap  consists  of a  uniform  magnetic  field  and  an electrostatic  quadrupole  potential.
Cylindrically-symmetric  deviations  thereof  are  parametrized  by  the  coefficients  B� and  C�, respectively.
Relativistic  mass-increase  aside,  the  three  characteristic  eigenfrequencies  of a charged  particle  stored
in an  ideal  Penning  trap  are  independent  of the  three  motional  amplitudes.  This  threefold  harmonic-
ity  is a highly-coveted  virtue  for precision  experiments  that  rely  on the measurement  of  at  least  one
eigenfrequency  in order  to determine  fundamental  properties  of  the  stored  particle,  such  as  its mass.
However,  higher-order  contributions  to  the  ideal  fields  result  in  amplitude-dependent  frequency-shifts.
In  turn,  these  frequency-shifts  need  to  be understood  for estimating  systematic  experimental  errors,  and
eventually  for correcting  them  by  means  of calibrating  the  imperfections.  The  problem  of calculating  the
frequency-shifts  caused  by small  imperfections  of a near-ideal  trap  yields  nicely  to  perturbation  theory,
producing  analytic  formulas  that  are  easy  to evaluate  for  the  relevant  parameters  of  an  experiment.  In
particular,  the  frequency-shifts  can  be understood  on physical  rather  than purely  mathematical  grounds
by  considering  which  terms  actually  drive  them.  Based  on  identifying  these  terms,  we derive  general
formulas  for  the  first-order  frequency-shifts  caused  by any  perturbation  parameter  B� or  C�.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Much more than a device for storing charged particles [1], the
Penning trap excels at relating fundamental properties of the stored
particle, such as its mass or magnetic moment, to a measurable fre-
quency [2]. In order to make full use of the precision the Penning
trap has to offer, the relationship between the measured frequency
and the sought-for quantity has to be understood in detail despite
the complications that come with a real-world experiment. Devi-
ations from the ideal Penning trap may  be unavoidable in general,
but they can also serve a purpose as a part of the detection system
[3,4].

In this paper, we employ a perturbative method to deal with
one particularly important subset of imperfections—cylindrically-
symmetric ones—and we focus on the frequency-shifts they cause.
Although these are not the only consequence of imperfections,
the frequency-shifts are often the most significant one, consider-
ing that frequencies constitute the main observables in a typical
experiment.
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Although the frequency-shifts for the experimentally most rel-
evant lowest-order cylindrically-symmetric imperfections have
previously been given numerous times [5–9], and the prescrip-
tions for calculating all the first-order shifts caused by this subset
of imperfections have been outlined in general [10–13], the spe-
cific formulas lack the common ground a general expression would
provide. In this paper, we  derive such readily-evaluated gen-
eral expressions for all the first-order frequency-shifts caused by
cylindrically-symmetric imperfections. As a little known fact, a gen-
eral treatment of the problem has been attempted before [14] with
Hamiltonian perturbation theory and classical canonical action-
variables, but since we disagree with the result given for magnetic
imperfections, a complete and correct check is certainly welcome.
Moreover, we try to be more explicit about our calculation, thereby
allowing the reader to verify its validity.

In Section 2, we  review the most important properties of the
ideal Penning trap as the zeroth-order input for the perturba-
tive treatment of imperfections. Section 3 then deals with how to
parametrize cylindrically-symmetric electric and magnetic imper-
fections. The mathematical groundwork for the calculation is laid
in Section 4 with particular emphasis on the implementation of
perturbation theory. With this method outlined in Section 4.2, the
actual first-order frequency-shifts are subsequently calculated in
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Sections 5 and 6 for electric and magnetic imperfections, respec-
tively.

2. The ideal Penning trap

The ideal Penning trap consists of a homogeneous magnetic field
�B0 = B0�ez pointing along the z-axis and an electrostatic quadrupole
potential

˚2(�, z) = V0C2

2d2

(
z2 − �2

2

)
, where � =

√
x2 + y2 (1)

is the distance from the z-axis. In the context of the experiment, V0
is understood as an applied voltage. The characteristic trap dimen-
sion d is typically defined such that the dimensionless parameter
C2 is close to unity for traps with hyperboloidal electrodes [15], but
any value may  be used to describe the quadrupole contribution in
other trap geometries, such as cylindrical traps with flat-plate [16]
or open endcaps [17].

Throughout this paper, we will work with the classical Newto-
nian equation of motion

�̈r =
�FL

m
= q

m
(�E + �̇r × �B) (2)

into which we insert the Lorentz force �FL experienced by a point-
like particle of mass m and charge q in the magnetic field �B and the
electric field �E = − �∇˚, derived by taking the negative gradient of
the electrostatic potential ˚.  Since the equation is linear in both
fields, we will simply add imperfections as we go along.

While early treatment of the ideal Penning trap partly started
out from a quantum-mechanical perspective [18,19], and an oper-
ator formalism suits the excitation and coupling of modes well
[20,21], we will content ourselves with a purely classical model,
ignoring both quantum-mechanical and relativistic effects. Spin
and relativistic mass-increase can be treated as a perturbation of
their own [5]. Furthermore, we will restrict ourselves to the “static”
case, meaning that the particle oscillates with constant motional
amplitudes in the absence of external excitation drives.

The emission of synchrotron radiation by an electron orbiting in
a strong magnet field allows to cool the electron’s cyclotron motion
into its quantum-mechanical ground-state. For heavier particles,
radiative cooling is inefficient [5], and the motional ground-state
remains out of reach unless laser-cooling is used [22]. Typical other
techniques such as buffer-gas cooling [23], resistive cooling of
one motion via an LC tank circuit [24], and cooling via sideband-
coupling to a cooled motion [25] leave the particle with high
enough a set of quantum numbers to warrant a classical treatment.
Moreover, some detection methods rely on motional amplitudes
well above the thermal limit. It is only recently that quantum-jumps
in the motion of a single resistively-cooled proton are on the brink
of being resolved in a huge magnetic inhomogeneity, albeit as a
spurious and ill-controlled side-effect where spin-flips are to be
detected [26,27].

Throughout this paper, we will assume a charged particle devoid
of internal degrees of freedom which could couple to electric or
magnetic fields. Apart from spin, this also excludes polarizability,
which may  play the role of an effective mass [28]. For the ideal
Penning trap with �B0 = B0�ez and �E2 = − �∇˚2, the classical equations
of motion for a particle of charge q and mass m are⎛
⎝ ẍ

ÿ
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−ẋ
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Being parallel to and therefore unaffected by the magnetic field,
the axial motion is a one-dimensional harmonic oscillator with the
angular frequency

ωz =
√

qV0C2

md2
. (4)

Trapping requires qV0C2 > 0. If there was no electric field, the parti-
cle would orbit around the magnetic field-lines with the free-space
cyclotron-frequency

ωc = qB0

m
. (5)

For V0 /= 0, the radial motion consists of two  circular modes with
frequencies1

ω± = 1
2

(
ωc ± ωc

|ωc|
√

ω2
c − 2ω2

z

)
(6)

Because the frequencies have to be real for the motion to stay
bounded, the second condition for trapping is |ωc| >

√
2ωz . The

radial mode with the lower (absolute) frequency is called mag-
netron motion; the frequency ω+ is associated with the modified
cyclotron motion and also referred to as the reduced cyclotron-
frequency because its absolute value is lower than the free-space
cyclotron-frequency ωc. In a typical experiment, the hierarchy is
|ωc| � |ω+| � ωz � |ω−|.

The trajectory in the ideal Penning trap is given by

x(t) = �̂+ cos(ω+t + ϕ+) + �̂− cos(ω−t + ϕ−), (7)

y(t) = − �̂+ sin(ω+t + ϕ+) − �̂− sin(ω−t + ϕ−), (8)

z(t) = ẑ cos(ωzt + ϕz). (9)

The amplitudes �̂± of the two  radial modes and the amplitude ẑ of
the axial mode, as well as the corresponding initial phases ϕi with
i = (+, −, z) are determined by the initial conditions. Later on, we
will use

�i = ωit + ϕi (10)

as an abbreviation for the total phase without always stressing the
time-dependent nature of �i.

From Eq. (6), we derive the three relations

ω+ + ω− = ωc, (11)

2ω+ω− = ω2
z , (12)

ω2
+ + ω2

− + ω2
z = ω2

c . (13)

The first and the last identity are particularly important, not only
because they relate the eigenfrequencies in the Penning trap to the

1 In contrast to virtually all other publications, we  have included essentially the
sign of ωc as a prefactor of the square root in Eq. (6), which allows us to handle
negative cyclotron frequencies consistently. Whereas the sign of the angular fre-
quency is not an additional degree of freedom for the one-dimensional axial motion
and was consequently taken to be positive by convention, the sign of the angular
frequencies associated with the two-dimensional radial motions encodes the sense
of revolution in a natural manner. We do not have to think about the sign of the
charge q or of the magnetic field B0, which could point along the negative z-axis.
Therefore, we  will not work with true frequencies � = |ω|/(2�) in this paper. This is
not meant to imply that the sense of rotation, defined in a coordinate system with
either of two possible choices for the z-axis, impacts the frequency-shift—it does
not,  even less so for cylindrically-symmetric imperfections. However, the sign of
the perturbation parameter B� with respect to B0 matters, and we do not want to
run the risk of losing it while working with the absolute value of qB0 in the free-
space cyclotron-frequency ωc. Moreover, the definition of ω± with the additional
factor ωc/|ωc| ensures that |ω+| ≥ |ω−|, regardless of the sign of ωc.
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