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Abstract

The relativistic multiconfiguration Dirac–Fock method is applied to the calculation of the radiative decay rates from the lowest J = 7/2 level of
the 4s24p4d configuration along the Bromine iso-electronic sequence. It is shown that only a limited number of configurations is needed to include
the most relevant contributions to the variation in correlation effects between this excited level and the ground 4s24p52P3/2 state. The transition
from LS to jj recoupling schemes along the sequence is studied and its impact on decay rates is discussed.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Metastable levels are important in dilute plasmas because
they are not depopulated by collisions but accurate values of
their lifetimes are difficult to obtain both from experiment and
from theory. For ab initio methods, how much of correlation
effects have to be included is a critical issue since, excepted
for few electron systems, a full correlated approach becomes
intractable. On the other side, semi empirical methods rely on
fitting some parameters to experimental results, these methods
are not relevant to study trends along iso-electronic sequences.
Indeed experimental results may be available near the neutral
end of the sequence but the fitted values cannot be used for
the high Z end of the sequence because of strong relativistic
effects. To include in a consistent way both relativistic correc-
tions, intermediate coupling and correlation contributions, we
use here the multiconfiguration Dirac–Fock method with the
purpose to include only the contributions significant for ener-
gies and probabilities of radiative decays. Our motivation to
select the Bromine iso-electronic sequence was because of the
importance of the M2 decay channel for the single excited KrII
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ion and, to our knowledge, no estimate of how this importance
evolves along the sequence is known.

This paper is organized as follows: in Section 2, the method
used to compute wave functions and transition probabilities is
outlined. The next section contains a detailed discussion of
the excited 4s24p44d4D7/2 level of KrII, for which an accu-
rate experimental result and previous theoretical calculations
are available [1], in order to assess the accuracy of the present
calculations. Section 4 gives the trends along the iso-electronic
sequence before we draw our conclusions.

2. Outline of the calculation method

2.1. The MCDF method

In this work, the 2007 version of the Dirac–Fock program of
the author and P. Indelicato, named mdfgme [2] is used. Details
on the Hamiltonian, angular momentum recoupling and numer-
ical methods can be found elsewhere [3–6] below is just a brief
summary for the sake of self-contained. The total energies asso-
ciated with the various levels of the atomic system are given by
the eigenvalues of the equation:

HΨΠ,J,M(. . . , ri, . . .) = EΠ,J,MΨΠ,J,M(. . . , ri, . . .), (1)
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where Π is the parity, J the total angular momentum eigenvalue,
and M is the eigenvalue of its projection Jz on the z axis. The
Hamiltion H is given by

H =
∑

i

hD(ri) +
∑
i<j

Vij(|ri − rj|) (2)

with hD the one electron Dirac operator and Vij an operator
representing the electron-electron interaction of order one in
the fine structure constant α. The expression of Vij in Coulomb
gauge, and in atomic units, is

Vij = 1

rij
(3)

−αi · αj

rij
(4)

−αi · αj

rij

[
cos
(ωijrij

c

)
− 1
]

+ c2(αi · ∇i)(αj · ∇j)
cos(ωijrij/c) − 1

ω2
ijrij

, (5)

where rij = ∣∣ri − rj

∣∣ is the inter-electronic distance, ωij the
energy of the exchanged photon between the two electrons, αi

are the Dirac matrices and c is the speed of light. It has been
demonstrated that the Coulomb gauge provides energies free
from spurious contributions at the ladder approximation level
and must be used in many-body atomic structure calculations
[7,8].

In the equations above, the term (3) is the Coulomb interac-
tion, (4) is the Gaunt (magnetic) interaction, and the last two
terms (5) stand for the retardation in the electron–electron inter-
action. In this expression the ∇ operators act only on rij and not
on the following wave functions.

Expanding the operators of Eq. (5) in powers of ωijrij/c one
obtains, at the limit ωij → 0:

BR
ij = αi · αj

2rij
−
(
αi · rij

) (
αj · rij

)
2r3

ij

, (6)

i.e., the retardation part of the Breit interaction which includes
the leading retardation contribution of order 1/c2. The total Breit
interaction is the sum of the Gaunt interaction (4) and the Breit
retardation (6).

In the calculations reported here, the electron–electron inter-
action for the self-consistent determination of the wave functions
is taken as the sum of the Coulomb and the Breit interactions.
Higher orders in 1/c, arising from the difference between opera-
tors (5) and (6) are treated here only as a first order perturbation.
Radiative corrections are also added by perturbation, a detailed
description of what is included in the most recent version of the
mdfgme code can be found in [9]. All calculations are done for
finite nuclei using a Fermi distribution with a thickness param-
eter of 2.3 fm. The nuclear radii are taken or evaluated using
formulas from Ref. [10].

The MCDF method is defined by the particular choice of the
total wave function to solve Eq. (1) taken as a linear combination

of configuration state functions (CSF):

|ΨΠ,J,M〉 =
Nν∑
ν=1

cν|ν, Π, J, M〉. (7)

The label ν stands for all other quantities (principal quantum
number, degeneracy, . . .) necessary to define unambiguously the
CSF besides the parity Π, the total angular momentum J and its
projection Jz. Each CSF is an antisymmetric products of one-
electron wave functions taken as as linear combination of Slater
determinants of Dirac 4-spinors:

|ν, Π, J, M〉 =
Nν

D∑
i=1

dν
i

∣∣∣∣∣∣∣∣
φi

1(r1) · · · φi
n(r1)

...
. . .

...

φi
1(rn) · · · φi

n(rn)

∣∣∣∣∣∣∣∣
, (8)

where the coefficients dν
i are determined by requiring the CSF

to be an eigenstate of J2 and Jz and the φ-s are the one-electron
Dirac 4-spinors:

φ(r) =
(

χ
μ
κ (Ω)P(r)

iχ
μ
−κ(Ω)Q(r)

)
(9)

with χ
μ
κ a two-component spinor, and P and Q respectively the

large and small component of the radial wave function. The
convergence process is based on the self-consistent field pro-
cess (SCF). For a given set of configurations, initial one-electron
radial functions are used to build the Hamiltonian matrix and get
a first set of mixing coefficients cν. Direct and exchange poten-
tial are constructed for all orbitals, and the integro-differential
equations obtained from the variational principle are solved.
Then a new set of potentials is constructed and the whole pro-
cess is repeated. Each time the largest variation for all radial
functions has been reduced by an order of magnitude, the Hamil-
tonian matrix is rediagonalized, and a new cycle is started until
convergence is reached.

2.2. Transition probabilities

To perform the calculations reported in the next sections,
some of the specific options of mdfgme code are used:

• First with the option radiative it is enough to define the CSF
for the initial and final states and, after the SCF optimiza-
tion of both states, all allowed transitions probabilities for all
multipoles of the electric and magnetic decay channels are
computed, so that there is no need to perform separated cal-
culations of each of the decay channels in order to find the
dominant one. Transition probabilities are computed with the
full operator, i.e., without low frequency approximation.

• To introduce correlation, two main options are available:
either give explicitly the list of CSF to include or let the pro-
gram build all single and double excitations from a reference
state. In this latter case, orbitals to be excited and non-closed
shells in which excitations will occur have to be specified.
The second option is indeed split in more than one possibility
but it is not our purpose to reproduce here part of the code’s
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