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a  b  s  t  r  a  c  t

Since  their  introduction,  digital  quadrupole  mass  spectrometers  have  described  by  analogy  to  traditional
sinusoidal  devices.  However,  digital  quadrupoles  exhibit  unique  behaviors  and  simplify  many  complex
ion  handling  operations  due  to their  uniquely  flexible  control  over  the  frequency,  duty cycle  and  ampli-
tude  of  applied  potentials.  Matrix  solutions  to the Hill  differential  equation  are used  to  explore  the  effects
of  these  additional  degrees  of  freedom  on  ion stability.  Two  parameters  are  explored:  varying  the  fre-
quency  ratio  of  the  applied  potentials  introduces  a predictable  number  of  bands  of  instability  to  the
stability  diagram.  Varying  the amplitude  ratio  of  the  applied  potentials  tunes  the  width  of  those  unsta-
ble  bands.  Stability  diagrams  governing  a  digital  mass  filter  employing  asymmetric  driving  potentials  to
generate  an  arbitrary  number  of pass  bands  of  adjustable  width  are  systematically  described.

©  2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Sinusoidal linear quadrupole devices confine ions using one har-
monically tuned circuit to generate a pair of driving waveforms
180◦ out of phase from one another. In contrast, digital linear
quadrupoles rely on a pair of high voltage pulse generators to
rapidly toggle between two voltages to independently generate
the applied potential waveforms for each pair of electrodes. It pro-
vides the ability to modulate the duty cycle and frequency of each
rod set independently and permits digital quadrupoles to easily
perform many operations which would be difficult to achieve in
sinusoidally driven ion guides. The ability to switch these param-
eters at will is crucial for most ion handling operations in the
digital ion guide. Demonstrated techniques range from mass filter-
ing [1–3] and controlling axial motion [4] to ultrahigh m/z protein
analysis [5] and quadrupole field induced tandem MS  [6]. The low
mass cut-off (LMCO) of a digital quadrupole is selected by varying
the operating frequency rather than the voltage. To date, digital
quadrupoles have always been operated with both sets of elec-
trodes switching at the same frequency and voltage, but this is not
a requirement. Operating the linear quadrupole with mismatched
frequencies and/or potentials generates unique behavior by provid-
ing asymmetric quadrupolar excitation to the confined ions while
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using a fixed duty cycle. This manuscript explores the effects of
asymmetric frequency and voltage operation on the stability dia-
gram of the digital linear quadrupole.

2. Methods

2.1. Matrix methods and stability diagrams

The matrix methods developed by Pipes [7], Richards et al. [1],
and Sudakov and coworkers [8,9] to provide analytical solutions
to the Hill differential equation may  be used to calculate ion tra-
jectories [10,11], create phase ellipses to predict ion acceptance
[10,12], evaluate pseudopotential well depth [13], and generate sta-
bility diagrams [8,14,6] for ions in any periodic quadrupolar field.
Describing the functional potential by a finite series of constant-
potential segments allows the creation of a series of 2 × 2 matrices
that describe ion motion over the series. If the initial velocity and
position of an ion are known then the velocity and position at the
end of each constant potential interval may  be precisely calculated.
These matrices may  be multiplied sequentially over any portion of
an RF period to define ion motion over that interval. Defining the
ion motion over one whole period of the functional potential per-
mits the calculation of the stability parameter, ˇ, at any point in
the a, q plane. Evaluating  ̌ along the x- and y-axes at many points
densely covering a region of q, a space maps the stability diagram.
Each diagram below is comprised of 850,000 points.
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Fig. 1. Two examples of frequency asymmetrical driving waveforms. One RF period
is  defined as the shortest repeating unit in the functional potential (black). The inde-
pendently controlled applied potentials (blue and orange) may  operate at higher
frequencies than the functional frequency. (For interpretation of the references to
colour in the text, the reader is referred to the web version of this article.)

This robust technique has been most widely applied to digi-
tally driven systems because only a few calculations are required
to precisely define ion motion in these cases. Applications to sinu-
soidal systems are rarer because the Mathieu equations provide a
straightforward way to treat this special case, but matrix methods
are equally applicable because they provide a general method to
calculate ion motion in any periodic quadrupolar field [6,14].

Matrix methods may  also be used to explore the effects of sup-
plemental quadrupolar excitation. Vernier et al. [15] have described
the effects of a superimposed low frequency supplemental sinu-
soidal excitation and examined the role of the relative phase of this
excitation on ion stability, but to our knowledge no one has system-
atically explored the effects of applying asymmetric frequencies
and voltages to digitally driven devices.

2.2. Waveform definitions

The period of the quadrupolar field is the shortest repeating unit
of the functional potential. In the phase-locked resonantly-tuned
sinusoidal devices currently in use, this is simply the period defined
by the resonantly tuned circuit. In digital quadrupole devices, each
pair of electrodes is controlled independently by a high voltage
pulser. This independence permits the potential applied to the two
pairs to pass through differing integer numbers of cycles in the same
stretch of time. Fig. 1 illustrates two pairs of normalized applied
square wave potentials in which the voltage on the x electrodes
(blue trace) switches at a different frequency than the voltage on
the y electrodes (orange trace). To simplify discussion, all applied
potential pairs presented in this work begin 180◦ out of phase at
t = 0. The functional potential between the electrodes (black trace,
�V  = Vx − Vy) defines ion motion in the quadrupole device along
one of the orthogonal axes. The functional potential along the other

orthogonal axis is defined by −�V. Note that when Vx and Vy have
the same sign, �V is less than the peak-to-peak voltage; frequency
asymmetric operation introduces field free (or low-field) intervals
to the period.

Each frequency pairing in this manuscript is expressed as �x:�y

where �x is the number of cycles of the alternating potential applied
to the electrodes along the x-axis of a linear quadrupole and �y

is the number of cycles applied to the electrodes along the y-axis
during the period. The simplest non-trivial case is 2:1 wherein the
x-axis electrodes experience 2 full cycles while the y-axis electrodes
experience only 1 (see Fig. 1a).

If the frequencies of the two  applied potentials are expressed as
an integer ratio, the resulting quadrupolar field will be periodic. For
any rational frequency pairing, the period of the functional poten-
tial will be the least common multiple (LCM) of the periods of the
applied potentials.

If the ratio describing the applied potentials may  be simplified,
then multiple periods of the functional potential are captured by
the waveform, and dividing the duration of the waveform by the
common factor yields the correct period. For example, if Fig. 1b
were misinterpreted as a 6:2 frequency ratio, then dividing the
period of the waveform by 2 would give the correct ratio, 3:1. If mul-
tiple periods of the driving waveform are erroneously treated as a
single period, the frequency will be misleadingly low. As we will see
shortly, the dependence of the Mathieu parameters on frequency
results in distorted stability diagrams in such cases. This frequency
dependence also means that matrix calculations using the infinitely
long periods resulting from irrational frequency pairings generate
nonsensical stability diagrams even while they generate accurate
ion trajectories.

Choosing the correct period over which to calculate ion stabil-
ity is critical for generating physically meaningful results. Fig. 2
illustrates the effect on the calculated stability diagram of treating
multiple iterations of the driving waveform as a single period. In
the 1:1 diagram, the low mass cut-off (LMCO) of stability zone 1
is located at the accepted value of q (q = 0.7125). The apex is also
found at the correct location in the q, a plane (0.57, 0.23). The period
of this functional potential has been chosen correctly.

The 2:2 waveform includes 2 repeating RF units in the defined
period. The result is a stability diagram which has been scaled along
both the a and q axes. The origin and extent of this scaling becomes
clear when definitions of the dimensionless Mathieu parameters
are examined:

a = 8zeU

mr2
o ˝2

(1)

q = − 4zeV

mr2
o ˝2

(2)

where z is the number of elementary charges on the ion of inter-
est, e is the elementary charge, m is the mass of the ion, ro is the
quadrupole radius,  ̋ is the angular frequency of the quadrupolar
field, V is the zero-to-peak RF voltage, and U is the DC potential
between the electrodes. The definitions of U and V are duty-cycle
independent [14].

When 2 cycles are included in each period, the frequency used
to calculate ion stability, ˝,  is reduced by a factor of 2. As a result,
the boundary values of a and q are 4 times larger than the accepted
values. In the 2:2 case, the low mass cut-off is located at q = 2.85.
Similarly, the apex (and all other points in the diagram) is scaled
by a factor of 4 and is found at (2.3, 0.92). The 3:3 case is scaled up
by a factor of 9.

The relative magnitudes of the two applied potentials also have
a tremendous effect on the stability diagram. Taken individually,
each waveform would generate a unique range of stable masses. It is
unsurprising that the behavior resulting from a linear combination
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