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a b s t r a c t

Application of the filter diagonalization method (FDM) to Fourier transform mass spectrometry (FTMS)
data is not new. Under certain conditions FDM provides resolution superior to Fourier transform (FT) and
was proved to be useful in investigation of space charge phenomena in an ion cyclotron resonance cell
(ICR) by O’Connor and Amster research groups. Kozhinov and Tsybin have reported substantial increase
in resolution and/or acquisition speed of high-resolution molecular and macromolecular MS data. In
light of fundamental difficulty in providing theoretical evaluation of the FDM performance under various
spectral and noise conditions, this paper is an empirical investigation aimed at establishing the method’s
true potentials and areas where it may perform better than currently used technologies. The study was
conducted on both synthetic transients and experimental Orbitrap transients. Unlike FT, resolution of
FDM depends strongly on noise levels. Consequently, we identify the regimes at which FDM can provide
a superior resolution even at moderate signal to noise ratios. Moreover, when individual peaks fail to be
resolved either because of the small peak separation or high noise conditions, the FDM solution seems to
preserve their cumulative intensity. This preservation of the true intensity seems to be very consistent
across rather wide ranges of noise conditions and almost impervious to the peak separation.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In the field of biological mass spectrometry, Fourier transform
mass spectrometry (FTMS) [1] has established itself as a leader
in mass accuracy and resolving power. This performance is made
possible by means of observation of the motion of ionic species
contained by an electric field in the case of Orbitrap, or by a com-
bination of electric and magnetic fields in a Fourier Transform Ion
Cyclotron Mass Spectrometer (FTICRMS), in which case their flight
path may reach kilometers in length for a typical FTMS experi-
ment. In a typical FTICR [2–5] experiment, trapped ions are excited
to their respective cyclotron orbits. The coherent motion of ions
in Orbitrap [6–10] is achieved by pulsed injection into an elec-
trostatic trap. The image current induced by the moving ions is
detected, digitized, and recorded for further processing. Typically,
transient signals are zero padded, apodized, and converted to fre-
quency domain via Fourier transform [11]. Even though FT is a
powerful and well understood technique, which is both numeri-
cally stable and fast, it has drawbacks. Aside from other artifacts
[12], inability to resolve ionic species in the frequency domain
beyond the FT uncertainty [13] is of particular concern, especially
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when interference causes errors in calculation of the abundance
of the resulting peaks. Given the intrinsic smoothness of the phase
function of FTMS signals, a noticeable improvement in resolution is
achieved by representing mass spectra in absorption mode [14–30].
Although improved, resolution of absorption spectra is still limited
by the FT uncertainty and noticeable errors in abundance are caused
by interference. A number of super-resolution (i.e., those which
bypass the FT uncertainty) approaches [31–38] have been reported
to be applied to FTMS transient data with varying degree of success.
A unique combination of computational speed and resolving power
seems to make the filter diagonalization method (FDM) so far the
most promising technique. The original idea of the method was
formulated by Wall and Neuhauser [39]. Later, Mandelshtam and
Taylor [40] turned this idea into a numerically efficient algorithm.
Some further developments of FDM can be found in Refs. [41,42].
The method as formulated in Ref. [40] demonstrated superb results
on both simulated [43–45] and experimental [45–49] FTMS tran-
sient signals. Hypothetically, under ideal (particularly, noiseless)
conditions, FDM can provide infinite spectral resolution. However,
the super resolution ability of FDM appears to be a very sensi-
tive to various imperfections of the data, i.e., its deviation from
the sum of exponentially dumped sinusoids. Those imperfections
include noise, non-stationary effects, non-Lorentzian line shapes,
etc.
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This article introduces a robust and computationally efficient
variant of a FDM-FT hybrid spectral approach in the field of FTMS.
The core of the method is a computationally stable and fast version
of the FDM algorithm.

Given the difficulty in estimating the method’s performance
subject to noise [50] and other conditions, results of an empirical
investigation are presented to demonstrate the regions of applica-
bility, and potential advantages of the method. These findings are
compared with the performance of the method when applied to
the experimental Orbitrap data.

2. Theory

Most results of this section can be found in Refs. [40–42].

2.1. The harmonic inversion problem and spectral estimation

Consider a time signal {cn : = c(n�)} (n = 0, . . ., N − 1), sampled
on an evenly-spaced time grid. With the assumption that the data
is composed of a series of damped sinusoidal oscillations, the har-
monic inversion problem corresponds to the parametric fit

K∑
k=1

dkun
k = cn (1)

with the set of 2K complex-valued unknowns {uk, dk}, (k = 1, . . .,
K), which we refer to as the line list. Each spectral feature is then
characterized by an amplitude dk and parameter uk, which is in turn
related to the “complex frequency” ωk as

uk := e−i�ωk ; ωk := �k − i�k (2)

While the actual oscillation frequencies are given by the real parts
�k, the imaginary parts �k correspond to the decay constants.

Define the hypothetical infinite-time FT of cn:

I(ω) := �

∞∑
n=0

cnz−n; z := e−i�ω (3)

The spectral estimation problem challenges to estimate I(ω) from
the finite sequence {cn}.

The two problems are closely related to one another. The para-
metric fit (i.e., the harmonic inversion problem) is more demanding,
when the individual entries {ωk, dk} are assumed to correspond to
physical observables. However, even when the line list is not exact,
a meaningful spectrum can often still be produced. Consequently,
in what follows, we will also focus on the algorithm’s capabilities
with respect to spectral estimation, with the hope that FDM can
produce spectra that are better than a standard finite FT spectrum:

I(FT)(ω) := �

N−1∑
n=0

cngnz−n, (4)

where gn is a suitable apodization function. As is well known, the
main drawback of Eq. (4) is its slow convergence with respect to
the data size N, manifested by the “FT uncertainty principle”

�ω = 2�

N�
(5)

where �ω stands for the spectral resolution as defined by the fast
Fourier Transform (FFT) grid spacing, or the FFT bin.

Starting with Eq. (1) and assuming the FDM line list is available
(regardless of the accuracy of its individual entries), we define the
“ersatz” FDM spectrum:

I(FDM)(ω) := �

∞∑
n=0

∑
k

dkun
kz−n (6)

= �
∑

k

dk

1 − uk/z
(7)

As already well documented (see, e.g., Refs. [40,41]), when the data
cn satisfies Lorentzian and sparseness assumption (1), which also
implies a high signal-to-noise ratio (SNR), the resolution of the FDM
ersatz spectrum becomes superior to that of the finite FT spectrum
(4). However, for severely truncated data, the FDM resolution is a
nontrivial function of several factors, such as spectral line shapes,
multiplet structure, and SNR, rather than the data size (N) alone.
When the Lorentzian assumption (1) is a poor representation of
the data, the harmonic inversion problem is ill-posed and its solu-
tion may be unstable and not useful for spectral estimation. In this
latter case it is desired to have a way to correct the ersatz spectral
estimate, such that it becomes at least as “good” as the finite FT
spectrum (4). One-way to accomplish this is to use a hybrid FDM-
FT spectrum (see, e.g., [40,41]), which combines the strengths of
both FT and FDM. In other words, if for some reason a genuine peak
happens to be resolved in the FT spectrum, then by construction,
the hybrid spectrum will recover this peak even if it is missing in
the ersatz spectrum (false negative). On the other hand, a spuri-
ous peak (false positive) appearing in the ersatz spectrum will be
suppressed in the hybrid spectrum.

First, note that a numerical solution of parameter estimation
problem (1) obtained by FDM (or even by any other method) may
not be exact, with the residual signal

c(res)
n = cn −

∑
k

dkun
k (8)

This information can then be utilized in the postprocessing steps
associated, in particular, with the hybrid spectral estimate. Here,
the formulation of the latter is somewhat different from the previ-
ous proposals:

I(hybrid)(ω) = �
∑

k

dk

1 − uk/z
+ �

N−1∑
n=0

[
cn −

∑
k

dkun
k

]
gnz−n

= I(FDM)(ω) + I(FT)(ω) − I(FDMf)(ω)

(9)

where the finite FT estimate of the FDM ersatz spectrum is given
by

I(FDMf)(ω) = �
∑

k

dk

N−1∑
n=0

(uk/z)ngn (10)

In practice the last equation is better to be evaluated analytically.
For this, consider the cosine apodization function

gn = cos(n˛) = 1
2

(ın + ı−n) (11)

with ˛ = �/2N and ı = ei˛, so that cos(N˛) = 0 and ıN = i. Substituting
this into Eq. (10) we obtain

I(FDMf)(ω) = �

2

∑
k

dk

N−1∑
n=0

[(uk/zı)n + (ukı/z)n]

= �

2

∑
k

dk

[
1 − i(uk/z)N

1 − (ukı/z)
+ 1 + i(uk/z)N

1 − (uk/zı)

]

= �
∑

k

dk
1 + (uk/z)N+1 sin ˛ − (uk/z) cos ˛

1 + (uk/z)2 − 2(uk/z) cos ˛

(12)

which is an expression that is easy to evaluate.
Given the FDM line list, regardless of whether or not it is mean-

ingful physically, Eqs. (9)–(12) provide working expressions for
computing the hybrid FDM-FT spectral estimate.
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