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a  b  s  t  r  a  c  t

Recent  experimental  and  theoretical  findings  suggest  that  the  concept  of time-dependent  instantaneous
frequency  (IF)  is required  to comprehensively  describe  ion  motion  and  mass  spectra  generation  in  Fourier
transform  mass  spectrometry  (FTMS).  Here,  we  derive  a set  of  differential  equations  describing  ion motion
in ion  cyclotron  resonance  (ICR)  and  Orbitrap  FTMS  mass  analyzers  from  the  IF standpoint.  A  moving  ion
is represented  by two  2D  oscillators:  first with  oscillations  coupled  in  the  radius-azimuth,  (r,  ϕ),  and
second  in  the  radius-z  axis,  (r, z),  coordinate  planes.  The  presented  description  is  thus fundamentally
different  from  a standard  representation  of  ion  motion  in  FT-ICR  MS  in  a  form  of  a  superposition  of
cyclotron  and  magnetron  radii.  Analysis  of  ion  motion  with  the  developed  theory  validates  the  hypoth-
esis  that  time-dependent  IF is the most  probable  characteristic  condition  of  ion  motion  in FTMS  mass
analyzers.  Application  of  IF  theory  improves  understanding  of  FTMS  fundamentals  and  should  advance
FTMS  implementation  and  practice.  For  instance,  the  obtained  relations  between  an  ion’s  IF  values  and
mass-to-charge  ratios  may  be  used  to refine  calibration  and  frequency  shift  equations.  Other  envisioned
benefits  are  improved  descriptions  of ion  RF excitation  and  transient  generation  processes,  as well  as  of
an influence  of  a space-charge  and  of an image  charge  fields.

©  2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Owing to highly accurate frequency measurements of multi-
periodic ionic signals, Fourier transform mass spectrometry (FTMS)
provides superior resolution and mass accuracy for molecular
structural analysis compared to other MS  techniques [1–8]. The
periodic ion motion and generated time-domain signals (transi-
ents) in FTMS are traditionally described by components having
static angular frequency ω = const and phase ˚(t) that depends
on time linearly, i.e., ˚(t) = ω · t + �0 where �0 is an initial phase
[9,10]. In case of a phase function ˚(t) non-linearly dependent
on time, ion motion calculations require a novel description,
based on time-dependent instantaneous frequency (IF) approach,
where the corresponding IF is ω̃(t) = (d˚(t)/dt) /= const. Recently,
it has been established that indeed there are components with
time-dependent frequencies in both experimental and simulated
transients in FT ion cyclotron resonance MS  (FT-ICR MS)  [11–14].
The mechanism of frequency variation in time has been explained
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by collisions leading to an increase in a space-charge field of ions
with the same m/z value [15], and the space-charge field of ions with
diverse mass-to-charge ratios [12,14,16,17], although other funda-
mental causes remain unclear [10]. Therefore, there is an incentive
to develop a theory describing ion motion with time-dependent
frequency for improved understanding of FTMS processes. Inter-
estingly, the IF approach has been developed and applied in many
application areas of signal processing [18–22], but not for ion
motion in mass analyzers.

Historically, the ion motion equations were first developed for
a single ion motion based on the Lorentz force law for various
electromagnetic fields, particularly for the case of a constant uni-
form magnetic field and quadratic electrostatic potential in mass
analyzers [23–30]. In parallel, charged particle motion analysis
was developed in ion physics, vacuum electronics, plasma sci-
ence, space science, and other scientific directions [31–38]. Some
of these achievements have been adopted for the MS  applica-
tions [39,40]. The non-linear solutions of ion motion equations in
FT-ICR MS  have been considered using a number of approaches,
including variation of constants, Laplace transform, averaging in
time, perturbation theory, and complex-variable oscillator with
both cyclotron and magnetron radii oscillations [30,33,34,41–48].
Specifically, ion motion with a variable phase was considered in

http://dx.doi.org/10.1016/j.ijms.2014.08.038
1387-3806/© 2014 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.ijms.2014.08.038
http://www.sciencedirect.com/science/journal/13873806
http://www.elsevier.com/locate/ijms
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijms.2014.08.038&domain=pdf
mailto:yury.tsybin@epfl.ch
dx.doi.org/10.1016/j.ijms.2014.08.038


76 O.Y. Tsybin, Y.O. Tsybin / International Journal of Mass Spectrometry 376 (2015) 75–84

a non-linear approach with averaging in time [49,50]. A number
of solutions were presented in terms of the cyclotron and mag-
netron radii complex oscillator [46,51]. Using Laplace transform,
a superposition of cyclotron and magnetron radius-vectors in the
linear approach was employed to describe ion radio frequency
(RF) excitation [41]. Nevertheless, in the study of geometries for
single-frequency resonant, in-phase excitation in FT-ICR MS  it was
assumed that each ion motion mode maintains a constant fre-
quency during the excitation process [48]. Similarly, in the dipole RF
excitation scheme for FT-ICR MS,  analysis of ion motion equations
was conducted using the constant frequency of ion rotation [52].
In an Orbitrap mass analyzer, solutions of z-axial ion motion with
non-linear time-dependent phase have been obtained numerically
with space-charge field consideration [53].

In that context, the aim of the current work is deriving a missing
analytical description of ion motion with an IF ω̃(t) and non-
linearly time-dependent phase ˚(t) for both ICR and Orbitrap mass
analyzers. The paper is organized as follows. In Section 2.1, the
description of the current analytical theories of ion motion in FTMS
is given and their limitations are underlined. In Section 2.2, a first
order ordinary differential equation is derived for both radial and
azimuthal IF in the uniform magnetic field and any electric field. In
Section 2.3, the derived differential equation is solved for ion tra-
jectories in the uniform magnetic field for the case of a harmonic
electric field with a quadratic potential distribution. In Section 2.4,
ion axial oscillations in both ICR and Orbitrap FTMS analyzers are
described. In Section 2.5 the general relations of mass-to-charge
ratio and frequency shift with the IF value are presented. Further,
Section 2.5 contains an overview of the developed IF approach as
well as the utility of its application in FTMS.

2. Results and discussions

2.1. Limitations of the current FTMS theories of ion motion

Analytical theory of ion motion in FT-ICR MS  is built around
a classical equation, widely employed within Newton-Lorentz
framework [25–40,54–56], see also Section SI in Supplementary
Information:

�̈r − �̇r × �ωc + � · ∇U(�r, t) = 0 (1)

In Eq. (1) the following parameters are employed: variable with
a dot on the top describes, as usual, a full derivative in time, �r is a
radius-vector of a charged particle with a charge q and mass m,  ion
cyclotron frequency, �ωc = ��B, � = q/m, U is an electric potential
with the corresponding electric field �E = (−∇U) around ion trajec-
tory, and �B is a magnetic field vector. At the present stage of ion
motion consideration, we assume that the dissipative processes
are absent. If both the radius-vector r̃(t) = x + iy and the electric
field vector Ẽ = Ex + iEy are complex variables in a plane transverse
to the homogenous magnetic field �B = [0, 0, Bz],  Eq. (1) could be
re-written as [27–30]:

¨̃r + iωc ˙̃r − �Ẽ(r̃, t) = 0 (2)

A linear (or harmonic), electric field, acting on the ion trajectory,
can be described by the following relations in Cartesian coordinates
Ẽ = Ex + iEy = C(x + iy), C = const. In a linear field, the well-known
solution of Eq. (2) can be each of the two decoupled ion phasors,
namely r̃+ and r̃−, rotating with different time-independent angular
frequencies, ω+ and ω−, as well as their linear sum [25–30,54]:

r̃ = r̃+ + r̃− = r+ exp[±i(ω+t + �0+)] + r−exp[±i(ω−t + �0−)] (3)

In the superposition, Eq. (3), r+ and r− are constants, and �0 is
the initial angular phase correspondingly for r̃+ and r̃−. To analyze
the transient generation it is required to determine ion trajec-
tory (r(t), ϕ(t), ṙ(t), ϕ̇(t)) with the initial parameters (r0, ϕ0, ṙ0, ϕ̇0).

Upon calculation of Eq. (3) typically certain values of r+, r−, �0+,
and �0− are taken as initial conditions. As a rule, it is assumed
that radii are the real constants and both �0+ and �0− are equal
to 0. However, there is no known procedure for r+, r−, �0+, and �0−
direct measurement. To calculate their values one must first obtain,
experimentally or theoretically, a number of physical parameters,
such as ion initial coordinates and velocities. Note, the ion trajec-
tory can be calculated if the frequency of ion motion is found as a
function of time and if the initial parameters are known.

The characteristic algebraic equation for the static, time-
independent and constant along an ion trajectory, frequency
ω = const of ion motion in linear constant electric field is usu-
ally derived by the substitution of a phasor r̃ into Eq. (2)
[25–30,33,45–47,54]:

ω2 − ωωc + �
Ẽ

r̃
= 0 (4)

The algebraic Eq. (4) is employed to describe ion motion during
the ion detection event, when Ẽ/r̃ = const. The solution of Eq. (4)
is a pair of spectral static partial ion motion frequencies: reduced
cyclotron ω+ and magnetron ω− frequencies, which do not depend
on ion coordinates and/or time on the trajectory:
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Although solutions given by Eqs. (3)–(5) are useful and widely
employed in FTMS theory, they do not explicitly present the IF ω̃(t)
spectra of an ion’s radius-vector r̃(t) oscillations, and, importantly,
are not applicable in the presence of non-linear fields.

Furthermore, Eqs. (2)–(5) were derived for FT-ICR MS  in a typ-
ical approximation that ion motion both along magnetic field and
transverse to it can be considered independently. However, this is
possible only for a linear (harmonic) field along all three coordi-
nates when components of this field are not coupled. Thus, 1D ion
axial motion is typically described independently from a transverse
(r, ϕ) motion by a differential equation of the second order, derived
from Eq. (1):

¨̃z − � · (Ez0 + Ẽz) = 0 (6)

In Eq. (6) variable z̃ is an ion coordinate along the z-axis (along
the magnetic field in FT-ICR MS). In the quadratic potential dis-
tribution the harmonic electric field along the axis is given by
Ez0 = −∂U/∂z = −2Cz̃, C = 2U0/d2

0 = const. In this case, when the
non-linear field Ẽz = 0, ion axial oscillations take place with a fre-
quency not dependent with time: ω2

z0 = −�(Ez0/z̃) = �(4U0/d2
0) =

2�C. Solutions of Eq. (6) are thus harmonic oscillations with a con-
stant frequency ωz0 [3,27–30,57]. In this exceptional case, formal
relation �C = (1/2)ω2

z0 is typical for Eq. (5) in the FT-ICR MS  liter-
ature [3]. However, frequency of axial oscillations in the presence
of non-linear fields cannot be accounted for by this approach, vide
infra.

In the environment of the ICR and Orbitrap cells non-linear
fields include: the space-charge field, the RF excitation field, the
image charge and induced current-generated field, the field dis-
torted by the misalignment of the cell geometry, and the force
field created upon ion collisions with neutrals, e.g., residual gases
[25,41,44–48,52,54,58–60]. Importantly, non-linearity of an elec-
tric field should lead to a non-linear form of Eq. (6) [40]. However,
Eq. (6) is not compatible with substitution of an axial electric
field dependent on both coordinates, (r, z). To account for such
fields, it is required to develop the theory of 2D ion oscillators
in the r, z plane. Similarly, in the transversal plane, Eqs. (4) and
(5) do not allow substitution of such non-linear fields as this
would introduce frequency dependence on time, which contradicts
the original approximations for derivation of these equations. For
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