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a b s t r a c t

A new, more general type of electrostatic ion trap mass analyzer is described. The potential distribution
of the electrical field in this trap can be expressed as a combination of a quadrupolar and logarithmic-
Cassinian potential. As the field can be described, in part, by the Cassinian equation the trap is called a
Cassinian trap. One mode of the Cassinian trap allows for a one-dimensional trapping motion. This is the
first time a one-dimensional trapping motion has been theorized in combination with a harmonic analysis
motion in an electrostatic trap. The one-dimensional trapping motion allows ions to be introduced and
trapped readily in the Cassinian trap. Theoretically, a mass range of a factor of 50 can be accommodated.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Electrostatic orbital ion trapping was first shown by Kingdon [1].
The ideal Kingdon trap consists of a wire along the center-axis of a
long tube. If an electric potential is applied between the wire and
the tube an electric field attracts ions to the wire. If the ions have
the proper kinetic energy perpendicular to the attracting direction
they will orbit around the wire thus the ions will be trapped. If the
tube is infinitely long, the electric potential, � (r), between the wire
and the tube can be expressed by the one-dimensional equation:

� (r) = ln(r/ri)
Rln

· Uln + Uoff (1)

where Rln = ln(ro/ri), the wire diameter is 2ri and the inner diam-
eter of the tube is 2ro. Uoff corresponds to the voltage applied to
the wire and Uln + Uoff the voltage applied to the tube. Makarov [2]
showed in his paper in 2000 that ions can be trapped in orbits
around the inner electrode while simultaneously conducting an
axial harmonic oscillation. This trap is commonly known as the
Orbitrap. The electric field in an Orbitrap can be expressed as a
combination of a quadrupolar and logarithmic potential and can be
written as a two-dimensional equation:

� (r, z) = ln(r/ri)
Rln

· Uln + 2 · z2 − r2 − c2

Rquad
· Uquad + Uoff (2)

Abbreviations: LCP, logarithmic-Cassinian potential; 1D, one-dimensional.
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where Rln = ln(ro/ri), Rquad = ro2 − ri2 and c = ri. The potential in the
Orbitrap will be Uoff (the voltage of the inner electrode) at r = ri
(the radius of the inner electrode at z = 0). The potential of the outer
electrode Uln + Uoff − Uquad is reached at r = ro (the radius of the outer
electrode at z = 0). The mass analysis of this device is derived from
the harmonic oscillation of ions along the z-axis [3,4]. The frequency
of an ion’s oscillation depends on the ion’s m/z.

However, there are alternative concepts for constructing elec-
trostatic traps that have harmonic ion oscillations along the z-axis.
The potential in one such trap can be described as:

� (x, y, z) = ln(((x2 + y2)
2 − 2 · b2 · (x2 − y2) + b4)/ai4)

Aln
· Uln

+ 2 · z2 − (2 − B) · x2 − B · y2 − c2

Aquad
· Uquad + Uoff (3)

where Aln = ln(ao4/ai4), Aquad = 2 (ao2 − ai2) and c2 = 2ai2, and B is a
constant.

The numerator of the quotient inside the logarithm corresponds
to the well known Cassinian equation [5]:

(x2 + y2)
2 − 2 · b2 · (x2 − y2) + b4 = a4 (4)

Hence this trap should be named Cassinian trap, where the equa-
tion for the Orbitrap is just a subset wherein r2 = x2 + y2, b = 0, ai = ri,
and ro = ao.

This leads to the quite obvious description of a combination of
a general logarithmic potential with a quadrupole potential:

� (x, y, z) = A1 · ln(f (x, y)) + A2 · (2 · z2 − (2 − B) · x2 − B · y2) (5)

The quadrupole potential alone satisfies already the Laplace
equation �� (x,y,z) = 0, that applies also to the logarithmic
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Fig. 1. A 3D plot of a classical Cassinian trap. The grid represents the outer electrodes
or receiving plates and the smooth mesh the inner electrodes.

Fig. 2. A 3D plot of a second order Cassinian trap.

potential, which gives a general definition of f(x,y):

f (x, y) = (d/dx(f (x, y)))2 + (d/dy(f (x, y)))2

d2/dx2(f (x, y)) + d2/dy2(f (x, y))
(6)

The function f(x,y) = x2 + y2 as well as f(x,y) = (x2 + y2)2 −
2b2(x2 − y2) + b4 satisfy this requirement and there are probably
more functions.

However, this brings us back to the Cassinian trap. The shape
of the outer and inner electrode which corresponds to an equipo-
tential surface can be derived when Eq. (3) is solved for z. z is then
a function in x and y. If � (x,y,z) is replaced by the voltage of the
outer electrode, z corresponds to z-values for the outer electrode
and if � (x,y,z) is replaced by the voltage of the inner electrode, z
corresponds to z-values for the inner electrodes. Fig. 1 shows a typ-

Fig. 4. Additional trapping motions, e.g., in a second order Cassinian trap. (a)
Cassinian curve and (b) cloverleaf.

ical Cassinian trap with the outer electrode as a grid and the inner
electrodes as a smooth mesh.

The potential distribution of the field can be expressed as a com-
bination of a quadrupolar and logarithmic-Cassinian potential. The
logarithmic-Cassinian potential (LCP) can be turned around the z-
axis and so different LCPs can be combined to give Cassinian traps
of higher order. To address this, in Eq. (3) x and y are replaced by:

gx(x, y, xoffn , yoffn , ˛n) = (x + xoffn ) · cos(˛n) + (y + yoffn ) · sin(˛n)

(7.1)

gy(x, y, xoffn , yoffn , ˛n) = (y + yoffn ) · cos(˛n) − (x + xoffn ) · sin(˛n)

(7.2)

When different LCPs, with different b-, xoff-, yoff- and ˛-values
are combined Eq. (3) converts to:

� (x, y, z) =
∑

n

[
ln(((g2

x + g2
y )

2 − 2 · b2
n · (g2

x − g2
y ) + b4

n)/ai4n)

Alnn

· Ulnn

]

+ 2 · z2 − (2 − B) · x2 − B · y2 − c2

Aquad
· Uquad + Uoff (8)

E.g., a trap with four inner electrodes (see Fig. 2) which corre-
sponds to an order of n = 2.

In the following, the motion along the z-axis will be referred
to as the analytical motion. The motion in the x–y plane will be
referred to as the trapping motion. The motion along the z-axis
is always harmonic. While the trapping motions in the Kingdon
trap or Orbitrap are always orbital can the trapping motions in the
Cassinian trap may be orbital or non-orbital.

An orbital trapping motion around the inner electrodes of a
Cassinian trap is possible (see Fig. 3a). Where the lemniscate
like (see Fig. 3b), nephroidic (see Fig. 3c) and especially the one-
dimensional (1D) motion (see Fig. 3d) are non-orbital. Higher order
traps according to Eq. (8) can exhibit even more trapping motions
(see Fig. 4). This is the first time non-orbital harmonic ion trapping
in an electrostatic ion trap has been theorized.

Fig. 3. Trapping motions in a classical Cassinian trap. (a) Orbital, (b) nephroidic, (c) lemniscate and (d) 1D.
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