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a  b  s  t  r  a  c  t

The  ideal  Penning  trap  consists  of a uniform  magnetic  field  and  an  electrostatic  quadrupole  potential.  In
the  classical  low-energy  limit,  the  three  characteristic  eigenfrequencies  of a charged  particle  trapped  in
this configuration  do not  depend  on the  amplitudes  of the  three  eigenmotions.  No  matter  how  accurate  the
experimental  realization  of  the  ideal  Penning  trap,  its harmonicity  is ultimately  compromised  by  special
relativity.  Using  a classical  formalism  of  first-order  perturbation  theory,  we  calculate  the  relativistic
frequency-shifts  associated  with  the  motional  degrees  of freedom  for a spinless  particle  stored  in  an  ideal
Penning  trap,  and  we compare  the  results  with  the  simple  but  surprisingly  accurate  model  of  relativistic
mass-increase.

©  2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Despite its versatility [1] and the eigenmotion called the mod-
ified cyclotron-mode, the Penning trap is not perceived as an
accelerator—a device typically viewed as capable of producing
highly energetic particles for which relativistic mass-increase plays
an important role. Given the small scale of the Penning trap ran-
ging from millimeters to a few centimeters, the charged particle
stored in it may  appear to move in the purely classical domain,
well outside the realm of special relativity. In the classical limit,
the three eigenfrequencies—all of which depend on the mass of the
stored particle to a varying extent—are independent of the motional
amplitudes. However, apart from possibly being too small to be
detected, there is no threshold for the onset of relativistic effects
and hence even the ideal Penning trap is inherently anharmonic.
It is because of the outstanding precision of up to 10−10 for sin-
gle frequency measurements that a relativistic shift was crucial to
the determination of the antiproton mass [2]. Similarly, relativistic
shifts may  be dominant sources of uncertainty in measurements
on light or highly charged ions [3–5]. Conversely, these shifts are
particularly interesting for measuring motional amplitudes [6,7]
because, unlike the anharmonic shifts caused by other imperfec-
tions, they do not depend on specific parameters of the trap apart
from the readily measured frequencies.

Probably because of early work on electrons and the inter-
est in their magnetic moment [8], the theoretical treatment of
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relativistic frequency-shifts used quantum-mechanical operator
formalisms [9–12]. When relativistic equations of motion were
considered [13–15], the focus was more on excitations of the mod-
ified cyclotron-mode than on static frequency-shifts.

A classical treatment with relativistic additions does not have
to be conceptually inferior to a fully relativistic or quantum-
mechanical approach, in particular if quantization remains
unobservable and an exact solution is impossible in either case. In
fact, reproducing the classical limit is in general a benchmark for a
relativistic quantum theory. Consequently, knowing the prediction
of a non-quantized treatment is worthwhile.

In this paper, we show that the relativistic frequency-shifts
caused by the motional degrees of freedom of a charged particle
stored in an ideal Penning trap are also reproduced in a classical
framework of perturbation theory. With classical framework we
refer to the use of equations of motion in contrast to operators and
eigenstates. In Section 2, we approximate the relativistic equation
of motion such that classical perturbation theory can be applied
with the classical limit of the ideal Penning trap as the starting
point. We  also outline our particular implementation of first-order
perturbation theory. The actual relativistic frequency-shifts are cal-
culated in Section 3. In Section 4, the result is then compared with
a simple model of relativistic mass-increase.

2. Theory and method

The theoretical framework of perturbation theory is essen-
tially the same as the one we  used to calculate the first-order
frequency-shifts caused by static cylindrically symmetric electric
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and magnetic imperfections of a Penning trap [16]. This time,
we have to learn how to incorporate relativistic effects as a per-
turbation in the classical equations of motion. To this end, we
take a more general look at the relativistic equations of motion
in search of a suitable perturbation parameter, before plugging
in the specific electric and magnetic field of the ideal Penning
trap.

2.1. Relativistic equation of motion

Consider a static electric field �E and a static magnetic field �B in
the laboratory frame. We  will use this frame exclusively through-
out the paper, never looking at the particle’s rest frame or its proper
time. Accordingly, all time-derivatives shown are with respect to
time in the laboratory frame. Moreover, the limitation to static
fields spares us from the complications of retardation. We  will
also ignore radiation damping because the emission of synchrotron
radiation is insignificant for particles heavier than electrons [11].
For a pointlike spinless particle of charge q and rest mass m,  the
relativistic equation of motion is then given by

�̇p = d
dt

�p = d
dt

(�m�v) = q(�E + �v × �B), (1)

where �p is the particle’s momentum and �v its velocity. We  will use
p = |�p| and v = |�v| as an abbreviation for the length of the corre-
sponding vectors. Thus far, the Lorentz factor � = 1/

√
1 − v2/c2

with the speed of light c is the only difference from the classi-
cal Newtonian equation of motion. However, in addition to the
familiar acceleration �̇v, taking the time-derivative of the relativistic
momentum �p = �m�v results in a time-derivative of the Lorentz fac-
tor, which is expressed more conveniently via the particle’s total
energy E = �mc2 and the relativistic energy–momentum relation
as

�̇ = 1
mc2

d
dt

E = 1
mc2

d
dt

[√
(mc2)2 + (pc)2

]
= �̇p · �p

�m2c2
. (2)

By plugging in the right-hand side of Eq. (1) for �̇p and by recalling
that the momentum �p is  always perpendicular to the force q�v ×
�B associated with the magnetic field, the relativistic equation of
motion is rewritten as

�̇v = q

�m

(�E + �v × �B
)

− q

�mc2
�v(�E · �v). (3)

Apart from the Lorentz factor � , which might be understood as
relativistic mass-increase by redefining the mass as m → �m, there
is an additional term that is not present in the classical Newtonian
equations of motion. However, these are recovered in the classical
limit of c→ ∞,  and consequently � → 1.

The ideal Penning trap consists of a homogeneous magnetic field
�B0 = B0�ez that is perfectly aligned along the z-axis and an electro-
static field

�E2 = − �∇˚2 = V0

2d2

⎛
⎝ x

y

−2z

⎞
⎠ (4)

that is derived from the quadrupole potential

˚2 = V0

2d2

(
z2 − x2 + y2

2

)
. (5)

The voltage V0 and the characteristic dimension d determine the
strength of the electric field gradient.

Whereas we will present an analytic solution for the classical
equations of motion in the ideal Penning trap shortly, no such
general solution is possible for the fully relativistic case because
of the coupling introduced by the Lorentz factor � . The situa-
tion is identical to the quantum-mechanical case: the Schrödinger

Hamiltonian is treated analytically in terms of three uncoupled
harmonic oscillators [17,18], but no exact solution for the rela-
tivistic wave equations of a charged particle in a Penning trap is
known. Either way, approximations have to be made when rela-
tivistic effects are taken into account. Since the motion of a charged
particle stored in a Penning trap is typically only barely relativistic, a
perturbative treatment of the lowest-order relativistic corrections
suffices.

With this simplification in mind, we adapt the relativistic equa-
tion of motion (3) accordingly, by expanding the inverse of the
Lorentz factor � as

1
�

=
√

1 − v2

c2
≈ 1 − v2

2c2
− · · · (6)

for small velocities v � c, thereby effectively assigning the role of a
perturbation parameter to c−2. By ignoring all the terms of higher
order than c−2, such as the next order c−4, the equation of motion
reads

�̇v = q

m

(
1 − v2

2c2

)(�E + �v × �B
)

− q

mc2
�v (�E · �v).

(7)

Note that—as an intrinsically relativistic correction—the last term
in Eq. (3) already came with a factor c−2. Therefore, already the
lowest-order relativistic correction in the Lorentz factor � results
in a term of order c−4, which we have neglected here.

By inserting the electric field �E2 given in Eq. (4) and the uniform
magnetic field �B0 = B0�ez of the ideal Penning trap into Eq. (7), the
approximate equations of motion become

⎛
⎝ ẍ

ÿ

z̈

⎞
⎠ =

[
1 − v2

2c2

]
ω2

z

2

⎛
⎝ x

y

−2z

⎞
⎠+

[
1 − v2

2c2

]
ωc

⎛
⎝ ẏ

−ẋ

0

⎞
⎠

− 1
c2

ω2
z

2

⎛
⎝ ẋ

ẏ

ż

⎞
⎠ [ẋx + ẏy − 2żz] (8)

with the velocity squared

v2 = ẋ2 + ẏ2 + ż2 (9)

given by the quadratic sum of the individual components of the
velocity vector �v. As abbreviations related to the classical case, we
have introduced the free-space cyclotron-frequency

ωc = qB0

m
(10)

with which the particle would orbit around the magnetic field-lines
if there were no electric field, and the axial frequency

ωz =
√

qV0

md2
(11)

with which the particle oscillates along the magnetic field-lines.
Clearly, trapping requires qV0 > 0.

In the classical limit of c→ ∞,  the radial motion of the particle
consists of two  circular modes with frequencies

ω± = 1
2

(
ωc ± ωc

|ωc|
√

ω2
c − 2ω2

z

)
, (12)

where ω+ is called the reduced or modified cyclotron-frequency,
and ω− represents the magnetron frequency. Trapping requires
ω2

c > 2ω2
z . The frequencies in the ideal classical trap satisfy the

relations

2ω+ω− = ω2
z , (13)
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