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a b s t r a c t

That two or more phases of small clusters can coexist in thermodynamic equilibrium over ranges of
temperature and pressure has become well established. Moreover the explanation for this apparent vio-
lation of the Gibbs phase rule is also now well known. The origin of the phenomenon lies entirely with
the difference between systems of small numbers of component atoms or molecules and those made
of large numbers, e.g., tens, vs. 1020. However little has been said about the maximum sizes of clusters
for which such coexistence may be expected to be observable. Here we show how one can estimate
that maximum size for observable coexisting phases, in which the unfavored minority phase constitutes a
detectable fraction of the total sample. In addition, the role of atom thermal motion in the phase transition
is analyzed.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Since the mid-1970’s, evidence has grown, and with it, inter-
pretation and explanation, of how and why small clusters of atoms
or molecules can exhibit bands of temperature and pressure (or of
other pairs of thermodynamic variables) within which observable
quantities of different phases may coexist in equilibrium [1–3]; for
reviews, see [4,5]. This phenomenon is not restricted just to two
phases; with small systems, more than two phases may coexist in
equilibrium [6–8]. The explanation is quite simple: if one exam-
ines the equilibrium constant Keq for coexisting phases ˛ and ˇ of
a cluster of n particles,

Keq = exp
(

−n��

kT

)
,

where the change in chemical potential is �� = �˛ − �ˇ, then it
is easy to see that even if ��/kT is nonzero but very small, e.g.,
10−10, but n corresponds to a macroscopic sample, such as 1020,
then the unfavored phase must be present in unobservably small
quantities. However if n is of order 100, then n��/kT can be small
enough, within a temperature region a little away from the point
where �� = 0, that observable amounts of the unfavored phase
may easily exist. If, for example, ��/kT = ±0.1 (then n�/kT is 20),
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and (i), the unfavored phase comprises about 13% of the total sam-
ple. The balance between the mean energy change per particle,
�ε, and the mean contribution to the entropy per particle, T�s,
are of course what determine the value of ��. Here we address
the question of how large a cluster may be and exhibit observable
amounts of two or more phases. The central point of this work is
determining the size dependence of �� and then relating that to
the sensitivity of experiments. In this analysis we will be guided by
clusters with completed atom shells, specifically those of 13 and 55
atoms. These cases most clearly exhibit the role of surface melting.
For other cluster sizes additional mechanisms of melting may need
to be invoked to obtain more precise estimates that we establish
here.

The most straightforward way to approach this question is to
examine Keq, and more specifically the terms ��/kT in the expo-
nent, to determine the range in which the magnitude of the full
exponent, |n��/kT |, is smaller than about 4. This corresponds to a
minority concentration of about 2%, which we assume is about as
small a percentage as one could detect. We must therefore estimate
the energy and entropy changes for phase changes of clusters in the
temperature ranges in which phase coexistence is possible. We shall
do this by using as an illustrative system clusters of argon, modelled
by a Lennard–Jones potential. Our target is an order-of-magnitude
estimate as a guide for experimental design, not a precise com-
putation. We intend this result to be a guide and stimulus for new
experiments, and the most likely and most appropriate are probably
going to involve some form of mass spectrometry.

1387-3806/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.ijms.2008.09.012

http://www.sciencedirect.com/science/journal/13873806
http://www.elsevier.com/locate/ijms
mailto:berry@uchicago.edu
dx.doi.org/10.1016/j.ijms.2008.09.012


R.S. Berry, B.M. Smirnov / International Journal of Mass Spectrometry 280 (2009) 204–208 205

2. Evaluating the free energy difference: “surface melting”

Before we address the observable coexistence range for true
melting of clusters, let us examine the process called “surface melt-
ing,” which is really a combination of promotion of a few atoms
from the surface layer to become “floaters” attached to the clus-
ter but free to move on the otherwise empty shell outside of the
cluster, while the remaining outer-shell atoms are simply vibrating
more loosely [6–8]. This phenomenon seems to occur in clusters of
about 45 atoms or more. By choosing argon clusters as our illus-
trative model, we fix the relevant range of T as that around about
35 K. The coexistence ranges for argon clusters are around this
value. The energy contribution to the change of chemical poten-
tial is determined primarily by the change in the mean number of
nearest-neighbor contacts. This is easy to estimate in terms of the
change in the number of pair dissociations, whose energies D we
can estimate as those of simple diatomic pairs, D0, whose value we
take as 12.3 meV or 143 K for argon. Estimating the entropy change
is a little more subtle. We break that change into two parts, one
associated with the change in configuration or available volume
for whatever relocation of atoms takes place in the transition, and
the other, associated with the change in the vibrational contribu-
tion to the entropy, which can be expressed in terms of the change
in the anharmonicity of the vibrational motion.

For a specific, simple example, we review the Ar13 cluster, which
we used in a recent analysis of how to evaluate the entropy change
of the phase transition in clusters. In that system, the phase change
is simply due to promotion of one atom from the icosahedral shell
of 12 atoms to a site on the surface. The energy change from the low-
temperature phase to that at higher temperatures is that of the loss
of three of the nearest-neighbor contacts, because the promoted
atom moves from having six contacts in its surface site to a site
“sitting on top” where it contacts only three neighbors. This is just
3D. The configurational part of the entropy change is simply that
associated with the promotion of any of the 12 surface atoms from
a single location to any of the 15 sites that do not border the hole
left by the promotion. Hence the configurational contribution to
the entropy change (in dimensionless units) is ln(15 × 12) ≈ 5. The
one remaining contribution is the entropy bit due to the change in
anharmonic vibrations.

Now let us generalize the calculation of the configurational
entropy change. Simulation studies have shown that in the first
stage of melting of multilayer clusters, roughly one particle in about
15 moves out of the outermost shell and becomes a “floater”, mov-
ing essentially freely on the surface of the cluster. Hence each of
these moves from a volume V0 corresponding to its own site in
the solid to a volume equal to that of the next larger shell. Sup-
pose that the radius of the unexcited cluster is R0, and the radius
of the individual (presumably atomic) particles is r and the inter-
nuclear distance is d. We make the distinction between 2r and d in
order to allow for vibrational motion to expand the cluster. Then
the volume of the shell in which the promoted particles move is
4�/3[(R0 + 2r)3 − R3

0]. The initial volume available to each atom is

v0 = 4�/3(d/2)3. If there are ns particles in the completed filled
shell, then we can assume that ns/15 of them are promoted when
“surface melting” occurs. The total increased available volume for
the cluster as a whole is therefore

�Vsm,cs = ns

15
4�

3

[
(R0 + 2r)3 − R3

0 −
(

ns

15
− 1

)
r3

]

Therefore the configurational entropy change for surface melting
of a closed-shell or “magic number” cluster is

�Ssm,cs = ln
(

�Vsm,cs

v0

)
(2.1)

For clusters with partly filled outer shells, we should do a somewhat
more elaborate but equally elementary estimate: when surface
melting occurs in a cluster with a shell roughly only 2/3 filled or
less, we can assume that the surface melting allows all the surface-
layer atoms to move freely on that original surface, but we must of
course take into account the volume excluded by the presence of
the other particles in the shell. In other words the newly available
volume is the fraction of the original shell that had unoccupied sites.
For clusters with more than about 2/3 of the surface sites filled, we
can assume that the volume available on surface melting is that of
the full-shell case, plus the volume of any additional empty sites in
the initial, solid-like state.

The energy change for surface melting of a closed-shell cluster
Esm,cs is easy to approximate as the number of promoted particles,
times the change of the number of closest contacts, in units of the
binding energy per pair, D:

�Esm,cs = 3
ns

15
(2.2)

for an icosahedral closed shell, since the number of contacts drops
from 6 to 3.

We have yet to estimate the contribution to the entropy from the
vibrational motion. We make the assumption that the vibrational
entropy change upon “surface melting” is approximately the same,
per unpromoted atom, as that found for the 13-atom cluster. That
vibrational entropy is a very linear function of the temperature,
approximately �S13 = 25T + 1.5, or, in terms of remaining surface
atoms, the vibrational entropy per remaining unpromoted is atom
�s13 = 2.2T + 0.13. Note that a more accurate representation of the
temperature dependence of the entropy jump for a 13-atom cluster
in the coexistence range is very steep and sharp, closer to a stepwise
function than to the linear dependence that we use here. Neverthe-
less, the linear dependence is a simple and rough approximation
adequate for this estimation purpose. We shall make the assump-
tion now that the vibrational entropy change of any closed-shell
cluster, in the surface-melting process, is given by this expression,
so that 14/15 of the atoms in the outer shell undergo this entropy
change while the other 1/15 of the outer-shell atoms go free to
roam on the surface as floaters. Hence the free energy change of
the closed-shell cluster on “surface melting” is

�Fsm,cs = �Esm,cs − T�Ssm,cs = D
ns

5
− T

D
ln

(
�Vsm,cs

v0

)

−14
15

ns(2.2T + 0.13). (2.3)

For open-shell clusters, we can estimate the average number of
contacts of the surface-melted state for systems with 2/3 or less of
the outer shell filled just by assuming that, in the surface-melted
state, each atom has three contacts with the lower layer and what-
ever fraction of contacts in the surface layer were occupied in the
solid form, e.g., 2/3 of 5, for the cluster with 2/3 of the surface sites
occupied. Thus for such a case, if fs is the fraction of the surface-
layer sites that are occupied, then �Esm,f = 3 + fsns, again in units
of the binding energy D.

The entropy of surface melting for an open-shell cluster con-
tains a vibrational contribution that we have still to estimate. For
clusters with no more than 2/3 of the surface sites occupied, we
have assumed that all the surface atoms are set free as floaters in
their own original layer in surface melting. Hence it is the next
layer below these that can gain larger amplitude, more anharmonic
motion by the surface melting process, and therefore the vibrational
contribution to the surface-melting entropy change for such a clus-
ter should be simply the number of atoms in the next-inner shell,
no-1, times that expression for the vibrational entropy increase per
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