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Lower order peak moments of individual peaks in heavily fused peak clusters can be determined by fitting
peak models to the experimental data. The success of such an approach depends on two main aspects:
the generation of meaningful initial estimates on the number and position of the peaks, and the choice
of a suitable peak model. For the detection of meaningful peaks in multi-dimensional chromatograms,
a fast data scanning algorithm was combined with prior resolution enhancement through the reduction
of column and system broadening effects with the help of two-dimensional fast Fourier transforms. To

g?r/r‘;‘; orredtf;nsive two-dimensional capture the shape of skewed peaks in multi-dimensional chromatograms a formalism for the accurate
chromatography calculation of exponentially modified Gaussian peaks, one of the most popular models for skewed peaks,

was extended for direct fitting of two-dimensional data. The method is demonstrated to successfully
identify and deconvolute peaks hidden in strongly fused peak clusters. Incorporation of automatic analysis
and reporting of the statistics of the fitted peak parameters and calculated properties allows to easily
identify in which regions of the chromatograms additional resolution is required for robust quantification.
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1. Introduction

Chromatography is one of the most common techniques in ana-
lytical laboratories, especially for the analysis of mixtures of larger
organic molecules. Its output is typically presented in the form of
chromatograms, the intensity of a detector signal over the time of
a separation in which each component is represented by a peak.
The amplitude of the peak reflects the concentration of the com-
ponents in relation to the detector sensitivity. The shape of the
peak on the other hand is determined by the complex interplay
of mass-transfer and adsorption phenomena occurring in the col-
umn and in the system dead-volume [1].In the ideal case, i.e. where
the components of interest are fully resolved, the interpretation of
these chromatograms is relatively straightforward as lower statis-
tical peak moments, such as the area (Oth-moment) and average
retention time (1st moment), can be calculated accurately by sim-
ple integrators or even graphically [2]. Where peaks are not fully
resolved, straightforward approaches such as perpendicular drop
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or tangent skim, may still lead to reasonable results for symmetri-
cal peaks with limited overlap [3]. In practice peaks may often be
skewed due to slow mass transfer or extra-column effects, that can
lead to large errors during chromatogram analysis [3].

One of the most wide-spread approaches to solving the prob-
lem of overlapping skewed peaks is multivariate curve resolution
(MCR) [4]. MCR utilizes the bilinear character of spectroscopic chro-
matograms [5], i.e. that the recorded chromatogram is a linear
combination of the concentration profiles of the present species and
their respective absorption properties. MCR has been demonstrated
to be both effective for mixtures where the single components
absorption spectra are known [6] and unknown [7], though in the
latter the statistical uncertainties of the obtained results increase
with the number of components present. In contrast to MCR, hard-
modeling techniques focus only on the concentration profiles and
require only univariate data. The two techniques are highly com-
patible and can compensate for the short-comings of each other
[8].

In this study we introduce a hard-modeling approach for the
deconvolution of complex two-dimensional chromatograms. A
special focus lies on the generation of good initial estimates with
the help of Fourier transforms. The results are subjected to rigorous
statistical analysis to identify the regions where the hard-modeling
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approach by itself can lead to sufficiently robust results and where
the multivariate techniques might be necessary.

2. Theory

Over the years a huge library of peak models has been developed,
many of which can account for peak asymmetries [9]. Probably
one of the most popular models for the description of asymmetri-
cal chromatographic peaks is the exponentially modified Gaussian
distribution (EMG). Its popularity is, at least, partly based on the
relative physical significance of its parameters: the variance can
be related to the peak broadening caused by axial dispersion,
whereas the exponential decay is a reasonable model to capture
dead-volume effects. An additional advantage of the EMG is that
it requires a relatively small number of parameters to be able
to describe a large variety of peak shapes, from almost perfectly
Gaussian to heavily tailing peaks with sharp fronts. The EMG can be
expressed in many mathematically equivalent ways that may lead
to large errors when calculated numerically for certain parameter
ranges. Kalambet et al.[10] introduced a simple decision parameter
zto guide in the selection of the form of the EMG to use for accurate
numerical calculation. For a single peak this decision factor can be
expressed as

1 nw—x o
where x is the input variable, for chromatography typically the
elution time or volume. The mode of the Gaussian constituent is
given as u, the Gaussian variance o and the relaxation parameter of
the exponential decay as 7. The equation best suited for numerical
calculation of the EMG is then for z<0
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and forz>0
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with h being the height of the unmodified Gaussian.

Once such a suitable peak model has been identified, numerical
optimizers have been shown to be able to fit them to experimental
data [11]. The EMG has been demonstrated to be suitable for opti-
mizer based fitting and deconvolution of most chromatographic
peaks providing the observed peak tailing is not too pronounced.
In these cases the polynomial modified Gaussian (PMG) shows bet-
ter fitting capability [12]. Besides the suitability of the peak shape,
knowledge of the number of peaks fused in the chromatogram
and their relative positons were identified as critical parameters in
the success of optimizer based deconvolution [13]. Depending on
the complexity of the chromatograms, identifying the number and
positions of possible peaks is not a trivial task. To avoid operator to
operator variation, especially in quality control environments, it is
preferable to have this operation performed by peak detection algo-
rithms. Two popular peak detection approaches are simple local
maxima search algorithms, that closely resemble a human look-
ing for visually distinguishable peaks, and analysis of higher-order
derivatives of the measurement signal. The latter has been shown
to be able to recognize more peaks, especially such hidden in shoul-
ders of larger peaks, but is highly sensitive to noise in the original
signal [14,15].

A more robust approach to increase the probability to observe
well resolved peaks is to increase the system’s peak capacity
[16]. This can be achieved by increasing the efficiency of the
used columns and reduction of extra-column effects, but most
effectively by increasing the number of orthogonal separation
dimensions [17]. The principles for the interpretation of these

multi-dimensional chromatograms remain the same. For practical
reasons, the dimensionality of comprehensive separations is often
limited to two orthogonal methods, even when performed in offline
mode [18]. As a peak model for two-dimensional chromatography
the Kalambet et al. [10] system of equations for the description of
EMG shaped peaks can be extended by a second dimension. The
general equation to describe a fused set of n two-dimensional EMG
distributions (2D-mEMG) is then given by
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where coy; and coy,; are co-factors that change depending on the
peak and parameter range. Similar to the one-dimensional case the
equation for the accurate calculation of the cofactors can be chosen
by decision variables:
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Similar to the one-dimensional case the co-factors for the first
dimension are for z,; <0
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Analog to the first dimension, the cofactors for the second
dimension are for z,;<0
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When viewing the system of Egs. (4)-(10) it becomes apparent
that there is no built in correlation between the first and second
dimensions. As a result the peak model should preferably be used
to describe systems where the dimensions consist of orthogonal
methods. This restriction to the application of the peak model is
deemed acceptable, as orthogonality of the separation dimensions
is an important part of the design paradigm of multi-dimensional
chromatography systems [19]. It should also be noted that fitting
multiple peaks to a single chromatogram approach also assumes
that the chromatogram is the result of the linear addition of the sin-
gle component contributions to the final recorded chromatogram,
a condition only met when the used detector is strictly operated
within its linear response range. When it is no longer feasible to
improve the separation system on a technical level, there is the
possibility to virtually reduce the contribution of band-broadening
and extra column effects. This effect can be achieved with the help
of Fourier transformations [20]. Deconvolution by means of the
Fourier transforms has been shown to have a suitable sharpen-
ing effect on chromatograms with EMG shaped peaks [21]. The
characteristics of applying the Fourier transformation in the form
of fast Fourier transform (FFT) algorithms to real experimental
chromatograms has been studied thoroughly [22]. Due to the intro-
duction of artefacts such as small negative side-lobes, and slight
shifts in peak retention patterns, research on the use of Fourier
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