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a  b  s  t  r  a  c  t

An  original  method  is proposed  for the  accurate  and  reproducible  measurement  of the  time-based  dis-
persion  properties  of short  L< 50 cm  and  narrow  rc< 50 �m tubes  at mobile  phase  flow  rates  typically
used  in  very  high-pressure  liquid  chromatography  (vHPLC).  Such  tubes  are  used  to  minimize  sample  dis-
persion  in  vHPLC;  however,  their  dispersion  characteristics  cannot  be accurately  measured  at  such  flow
rates due to system  dispersion  contribution  of  vHPLC  injector  and  detector.  It is  shown  that  using  longer
and  wider  tubes  (>10  �L) enables  a reliable  measurement  of the  dispersion  data.  We  confirmed  that  the
dimensionless  plot  of the  reduced  dispersion  coefficient  versus  the  reduced  linear  velocity  (Peclet  num-
ber)  depends  on  the  aspect  ratio,  L/rc, of  the tube,  and unexpectedly  also  on the diffusion  coefficient  of
the  analyte.  This  dimensionless  plot  could  be  easily  obtained  for  a  large  volume  tube,  which  has  the same
aspect  ratio  as that  of the  short  and  narrow  tube,  and  for the  same  diffusion  coefficient.  The  dispersion
data  for  the  small  volume  tube  are  then  directly  extrapolated  from  this  plot.  For  instance,  it is found  that
the  maximum  volume  variances  of 75  �m ×  30.5  cm  and  100  �m × 30.5  cm  prototype  finger-tightened
connecting  tubes  are  0.10 and  0.30  �L2, respectively,  with  an  accuracy  of  a  few  percent  and  a  precision
smaller  than  seven  percent.

©  2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Within the last decade, the advances in chromatographic
columns and sorbent reduced the peak volume variances of a
weakly retained compound (k′�1) from about 500 �L2 to only
5 �L2 [1–4]. At the same time, manufacturers of modern vHPLC
instruments reduced the system contribution of injector, connect-
ing tubes, and detector typically to ranges from about 1 �L2, at best,
to values as large as 20 �L2 [5–8]. For the sake of comparison, the
system volume variance of traditional HPLC systems operating at
400 bar is historically on the order of 50–100 �L2 [9,10,8,11]. Over-
all, the progress made in system technology is still lagging behind
that achieved in column technology [2]. This has become a con-
cern in vHPLC since the chromatographer is unable to utilize a full
intrinsic efficiency of the chromatographic column [1].

Consequently, efforts have been devoted toward the reduction
of the sample dispersion along vHPLC systems [12]. The system dis-
persion contribution for small detector cells, injector [13], impact
of rectangular injection profile bias [14], tubes as well as connec-
tors/fittings is relatively small, hence difficult to directly measure.
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The characterization of tubing dispersion becomes extremely chal-
lenging at largest flow rates (1.0–2.0 mL/min) when the tube
volume (dispersion) becomes a minor contribution to total disper-
sion, system peak is very narrow and arrives to detector at very low
time.

The theory of axial dispersion along circular tubes is well estab-
lished in the spatial domain. It is not in the temporal domain
for the lack of mathematical solution. It was first investigated
by Taylor [15,16], then by Aris [17]. Later, Lighthill, Atwood, and
Golay studied the same dispersion problem but for short tubes
under pre-asymptotic conditions [18–20] where they studied the
evolution of a peak shape during the zone initial movements
through the tube using experimental data and computer simu-
lation. Lenhoff added the effect of partitioning in short coated
tubes [21]. Alizadeh discussed the conditions of validity of the Tay-
lor’s theory for liquid diffusivity measurements [22]. In particular,
Alizadeh distinguished between the spatial and temporal variances
of the concentration distribution since, in practice, mostly temporal
data are recorded. The difference between spatial and tempo-
ral concentration distributions were simulated during the early
development of dispersion [23], shedding light on the complex
relationship between time and spatial variances for short tubes.
Neue [24] proposed an original expression for the molecular dis-
persion through circular tubes based on the coupling theory of eddy
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diffusion as elaborated by Giddings [25]. It is clear that the proposed
models overestimate the actual measurements at high flow rates
for tubing with small aspect ratio. Such results were previously
anticipated by Booras [26], who concluded that the Taylor-Aris dis-
persion theory may  not be applicable for such cases. Unresolved
issues are still remaining regarding the time-based dispersion along
short tubes: beyond which reduced linear velocity the observed
time-based variance starts deviating from the spatial-based vari-
ance predicted by Aris? What is the impact of the sample diffusivity
on this threshold speed? How does the observed time-based vari-
ance change with increasing further the linear velocity? Finally,
how can we measure accurately sample dispersion at such a high
flow rate along short and narrow tubes? All these questions will be
answered only if more detailed analyses are investigated.

The main goal of this work is to answer these unsolved rid-
dles by accurately measuring the time-based dispersion of short
and narrow tubes that are used as connectors with vHPLC instru-
ments. The variance of such tubes (inner diameter < 100 �m and
a length < 40 cm)  is smaller than 1 �L2, and cannot be measured
accurately at high flow rates even with vHPLC instrument equipped
with 250 nL detection cells and 10 nL injection loops. We propose
first a method in which the variance of larger internal diame-
ter/volume capillary (the same aspect ratio, L/rc as the capillary
of interest) is experimentally measured. The variance of smaller
internal diameter/volume of the same L/rc ratio is then directly
extrapolated. We  used this method to estimate the volume variance
of prototype finger-tightened capillaries having internal diame-
ters of 75 and 100 �m and length of 30.5 cm,  but the approach
can be applied to any other sizes of circular tubes. We  examined
flow rates typically used in vHPLC (0.05–1.50 mL/min). Secondly,
this extrapolation method is tested based on the direct measure-
ment of the band spreading on these capillaries of interest by
coupling a nano-LC detector to the UHPLC system. Finally, it is
shown how this work can quantitatively refine the dispersion
models through open tubes in a range of flow rates where both
flow and diffusion mechanisms govern the overall sample disper-
sion.

2. Theory

2.1. Exact dispersion theory along circular tubes

The general theory of sample dispersion through a cylindri-
cal tube under laminar flow, e.g., for a Hagen-Poiseuille parabolic
radial flow profile, was  initially derived by Taylor [15] and later
by Aris [17]. Alizadeh applied the results of this theory to mea-
sure liquid diffusivity [22]. In particular, he distinguished between
conditions when the asymptotic Taylor dispersion regime applies
(infinitely long tubes or infinitely long elution times) or when this
dispersion model fails (short tubes and/or for large linear veloci-
ties).

The Taylor asymptotic model along circular tubes is acceptable
when the number of theoretical plates, N, is larger than 30 as shown
by Atwood and Golay from numerical calculations and experimen-
tal data [18,19]. When N< 30, peaks become clearly asymmetric and
the observed variance is slower than that predicted by the linear
Taylor behavior. The deviation from Taylor model is apparent at
very large reduced linear velocity � defined by Eq. (1)

� = 2urc

Dm
(1)

where rc is the inner radius of the tube and Dm is the diffusion
coefficient of the sample in the eluent. Note that the optimum per-
formance of the tube, hmin=1/(2

√
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linear velocity of �opt =
√

192 � 14 [15]. u is the average linear
velocity across the circular tube at a given flow rate Fv
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Alizadeh distinguished between the spatial variances (where
the time is fixed, �2

z (t)) and the time or volume variances (where
the tube length is fixed, �2

t (L) or �2
v (L) of the concentration distri-

bution c(z, t) [22]. In practice the experimenters most often observe
the latter, since they record concentration distribution as a func-
tion of time at the tube outlet. The relationship between these two
variances defined by Eqs. (3) and (4) is only straightforward when
the band width is infinitely small with respect to the tube length
[25].
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When the bandwidth is not negligible compared to the tube
length, the above-mentioned expressions are not rigorously valid.
Alizadeh derived approximate and analytical solutions when the
peaks become slightly asymmetric [22]. When the peak shape is
severely distorted in the time domain [18,19,23], the spatial vari-
ance cannot be directly translated to time/volume domain variance
by Eqs. (3) and (4).

In contrast, the general expression of the spatial variance along
short tubes is known irrespective of the number of plates N. The
average cross-section spatial variance, �2

z (t), at the time t = L/u after
the pulse has begun to move through a parabolic stream flow is
given by [17,22]:
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where ˛0n is the nth root of the first derivative of the zeroth-order
Bessel function of the first kind. The first ten roots consid-
ered in this work were: ˛1 = 3.83170597, ˛2 = 7.015586669,
˛3 = 10.173468135, ˛4 = 13.323691936, ˛5 = 16.47063005,
˛6 = 19.61585851, ˛7 = 22.76008438, ˛8 = 25.903672087,
˛9 = 29.046828534, and ˛10 = 32.189679911 [27].

The spatial domain variance can be conveniently expressed as
the dimensionless reduced plate height, using Eq. (6)

hz = �2
z

2Lrc
, (6)

Rewriting Eq. (5) for the elution time expressed as t = L/u, after
simplification, we obtain Eq. (7), which demonstrates that the dis-
persion properties (hz) are fully determined once the reduced linear
velocity, �, and the aspect ratio of the tube, L/rc, are known.
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The limit of hz(�) when � tends toward infinity can be deter-
mined mathematically. Using the second order Taylor development
of the exponential function near 0 and the sums of the infinite series
involving the zeros of Bessel functions [27], e.g.,

exp(−x) = 1 − x + x2

2
+ O(x3) (8)
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