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a  b  s  t  r  a  c  t

In closed-loop  recycling  (CLR)  chromatography,  the  effluent  from  the  outlet  of  a  column  is directly
returned  into  the  column  through  the  sample  feed  line  and  continuously  recycled  until  the  required
separation  is  reached.  To  select  optimal  operating  conditions  for the  separation  of  a  given  feed  mixture,
an  appropriate  mathematical  description  of  the  process  is  required.  This  work  is concerned  with  the  anal-
ysis of models  for the  CLR  separations.  Due  to  the  effect  of counteracting  mechanisms  on separation  of
solutes, analytical  solutions  of the  models  could  be helpful  to  understand  and  optimize  chromatographic
processes.  The  objective  of this  work  was  to develop  analytical  expressions  to describe  the CLR counter-
current  (liquid–liquid)  chromatography  (CCC).  The  equilibrium  dispersion  and  cell models  were  used  to
describe  the  transport  and  separation  of  solutes  inside  a CLR  CCC  column.  The  Laplace  transformation  is
applied  to  solve  the model  equations.  Several  possible  CLR  chromatography  methods  for  the  binary  and
complex  mixture  separations  are  simulated.

© 2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The most simple way to improve separation efficiency of chro-
matograpic processes for a given two-phase solvent system, when
compounds with close values of the partition coefficient are to
be separated, is to increase the length of the column. In counter-
current chromatography (CCC), this can be achieved by using
multilayer coils connected in series [1,2]. However, the increasing
of column length is sometimes limited by the increasing inlet pres-
sure. The mobility of both phases in CCC allows the implementing of
cyclic dual-mode counter-current processes, in which the CCC sep-
aration consists of a succession of two isocratic counter-current
steps and is carried out in series alternating between normal
phase and reversed phase operation, each phase eluting alternately
through the opposite ends of the column [3–14]. The sample is fed at
the beginning [8,10–14] or into the middle section [3–7] of a column
and moves forward and back with the phases inside the column.
This shuttle movement of the sample actually corresponds to an
increase in length of the column, which requires no increase in the
column inlet pressure. Another approach to simulate the length-
ening of the column, which is not associated with an increase in
inlet pressure, consists of recycling the sample several times over
the column. The main advantages of the recycling chromatography
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are considerable solvent saving, since the separation takes place
in the enclosed volume, and better peak resolution. The closed-
loop recycling (CLR) gas chromatography has been known since
1959 [15]. Since then, various recycling chromatography methods
have been suggested and investigated [16–23]. The first applica-
tions of the recycling principle in CCC were reported in [24,25]. The
recycling CCC was  successfully implemented for isolation of nat-
ural products [26–31]. In this paper, we will consider closed-loop
isocratic recycling liquid–liquid chromatography.

For simulation and optimal design of CLR liquid–liquid chro-
matography, an appropriate theory is needed. The process can be
described on the bases of continuous-diffusion or discrete (staged)-
cell models. Simulations of chromatographic separations based on
discrete and continuous models give identical results, supposed
correct relationship between model parameters is used. Theoreti-
cal approaches for the CLR solid–liquid chromatography, based on
the continuous equilibrium dispersion model, were proposed and
analyzed by numerical calculations [16,19].

This paper is devoted to the further development of the theory of
CLR liquid–liquid chromatography with a view to derive an analyt-
ical description of such processes of chromatographic separation.

2. Mathematical description of the closed-loop recycling
counter-current chromatography

To describe the transport and separation of solutes inside a CLR
liquid–liquid chromatographic column, we will first build on the
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Fig. 1. Schematic diagram of the CLR CCC (A) and the applied mathematical model
(B).

ideal recycling equilibrium-dispersive (IRED) model: the column
outlet is connected to the column inlet; the effects caused by the
pump and connecting lines are neglected [16,19]. This model was
proposed to describe the CLR solid–liquid chromatography. It is also
applicable to CLR liquid–liquid chromatography. Analytical solu-
tions presented for the first time in this paper may  also be useful
in the analysis of CLR solid–liquid chromatography.

In classical chromatography, a solute is transported along the
column only with the mobile phase and remains longitudinally
motionless in the stationary phase. In CCC, both liquids undergo
intense mixing, and the axial mixing in the stationary phase
can considerably contribute to band broadening. The diffusion
model under consideration takes into account the rate of axial
mixing in both phases in terms of effective longitudinal diffu-
sion coefficients (Dm – in the mobile phase, Ds – in stationary
phase).

As applied to CCC, the following propositions of the IRED theory
can be postulated (Fig. 1):

(1) The system is closed, the column outlet is connected with the
column inlet, so that at both points the concentrations are iden-
tical.

(2) The concentrations in the mobile and stationary phases are in
equilibrium at any cross section of the column.

(3) The retained volume of stationary phase is constant at any cross
section of the column.

(4) The phenomena of axial mixing (Dm – in the mobile phase, Ds

– in stationary phase) and interphase mass transfer that cause
band broadening can be described by a single dispersion param-
eter.

Under these assumptions, and according to Fig. 1, the mass bal-
ance equation and boundary conditions are given as follows:
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where Ac is the column cross-section; F is the volumetric flow rate
of the mobile phase; L is the length of the column; S = Vs

Vs+Vm
= Vs

Vc
is

the fractional volume of the stationary phase, Vm and Vs are the vol-
umes of mobile and stationary phases in the column, respectively,
and Vc = Vs + Vm is the column volume; z is the coordinate along the
perimeter of the circulating loop; x and y are solute concentrations
in mobile and stationary phases, respectively; Q is the amount of
the solute in the sample injected; � is the time.

The boundary condition (3) corresponds to the assumption (1)
and is identical to that considered in [16,19], while the condition
(2) is new and represents the law of conservation of mass.

Taking into account the linear equilibrium relationship between
the solute concentrations in the phases y = KDx, Eqs. (1) and (2) can
be rewritten as
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The initial conditions for the case, when the sample is impulsively
injected at a cross-section z = 0 of the chromatographic loop, may
be represented in the form [32]:
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Rendering the problem to be solved dimensionless, the model
equations can be transformed to:
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with
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