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a  b  s  t  r  a  c  t

The  model  of electromigration  of  a multivalent  weak  acidic/basic/amphoteric  analyte  that  undergoes
complexation  with  a mixture  of  selectors  is introduced.  The  model  provides  an  extension  of  the  series  of
models  starting  with  the single-selector  model  without  dissociation  by  Wren  and  Rowe  in 1992,  contin-
uing  with  the  monovalent  weak  analyte/single-selector  model  by  Rawjee,  Williams  and  Vigh  in 1993  and
that  by  Lelièvre  in  1994,  and ending  with  the  multi-selector  overall  model  without  dissociation  developed
by  our group  in 2008.  The  new  multivalent  analyte  multi-selector  model  shows  that  the  effective  mobility
of  the  analyte  obeys  the  original  Wren  and Row’s  formula.  The  overall  complexation  constant,  mobility  of
the  free  analyte  and  mobility  of  complex  can  be  measured  and  used  in a standard  way.  The  mathematical
expressions  for the  overall  parameters  are  provided.  We  further  demonstrate  mathematically  that  the  pH
dependent  parameters  for weak  analytes  can  be  simply  used  as  an  input  into  the  multi-selector  overall
model  and,  in  reverse,  the  multi-selector  overall  parameters  can  serve  as an  input  into  the  pH-dependent
models  for  the weak  analytes.  These  findings  can  greatly  simplify  the rationale  method  development  in
analytical  electrophoresis,  specifically  enantioseparations.

© 2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Selectors have the ability to separate structurally highly related
analytes (including enantiomers) with similar mobilities or neutral
compounds that would otherwise co-migrate in the (capillary zone)
electrophoresis (CZE). For this ability, the interactions between
the selectors and the analytes are intensively studied and sev-
eral models of electromigration under the complexation have been
introduced in the CZE theory. The most relevant seems the mod-
els assuming 1:1 (selector:analyte) complexation stoichiometry.
Although the 1:1 stoichiometry is not guaranteed in general, it
results from experimental studies that this is a preferred stoichiom-
etry for many complexes, namely with cyclodextrins, the popular
selectors in CZE [1,2].

Under these circumstances, the analyte–selector equilibrium is
established as

A + S � AS K ′
AS = [AS]

[A][S]
(1)
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where A and S represent the free analyte and the free selector in
the solution, respectively, AS is the analyte–selector complex, K ′

AS is
the (ionic-strength apparent) complexation constant and the terms
in the square brackets, [·], stay for the concentrations. The selector
is supposed to be in a high excess over the analyte, so that the
complexation does not consume a significant portion of its total
concentration, cS. Thus the approximation of

[S] = cS (2)

is generally applied. If an analyte is present in numerous forms
among which equilibria much faster compared to the elec-
trophoretic movement exist, its effective mobility becomes

�eff =
∑

˛i�i (3)

where ˛i are the molar fractions of the individual forms of the ana-
lyte and �i are their respective electrophoretic mobilities. Using
this relationship, the effective mobility of an analyte under com-
plexation results as published by Wren and Rowe in 1992:

�eff = �0 + �ASK ′
AScS

1 + K ′
AScS

(4)

where �0 is the electrophoretic mobility of the free analyte and
�AS is the mobility of the analyte–selector complex. The rela-
tion (4) can be used to predict separation characteristics such as
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the effective mobility difference, selectivity and resolution. This is
advantageously utilized in analytical chemistry for the rationale
method development and optimization [1–5].

The shortcoming of the model (4) is its limitation to the sin-
gle analyte form interacting with the single selector (as we  will
further refer to as the SASS system). In reality, the analytes are
often weak acids or bases that undergo dissociation equilibria cou-
pled with the complexation. Rawjee, Williams and Vigh partially
overcome this limitation in 1993 by extending the model to mono-
valent weak acidic and basic analytes [6,7]. The theoretical work of
this group finally resulted in the “charged resolving agent migra-
tion” (CHARM) model, which relates the physical characteristics of
the monovalent weak acidic/basic analyte to the fundamental sep-
aration characteristics, such as the selectivity and the resolution
[8].

Lelièvre et al. [9] has adopted a different strategy, and showed
that the effective mobility of the monovalent week acidic/basic ana-
lyte can be formally expressed in terms of the simple SASS model
(4):

�eff = �pH
0 + �pH

AS K ′pH
AS cS

1 + K ′pH
AS cS

(5)

with

K ′pH
AS = K ′

HAS

K ′
a,HAS + [H3O+]

K ′
a,HA + [H3O+]

(6)

�pH
0 =

K ′
a,HA�A− + [H3O+]�HA

K ′
a,HA + [H3O+]

(7)

�pH
AS =

K ′
a,HAS�A−S + [H3O+]

K ′
a,HAS + [H3O+]

(8)

where �A− , �A−S, �HA, �HAS, K ′
A−S

and K ′
HAS are respectively mobili-

ties of the free dissociated form of the analyte, its complex with the
selector, the free protonated form of the analyte, its complex with
the selector, and the (ionic strength apparent) complexation con-
stant for the dissociated, and the protonated forms of the analyte.
K ′

a,HA is the (ionic strength apparent) acidic dissociation constant of
the free analyte and [H3O+] is the concentration of the hydroxonium
cations. K ′

a,HAS is the (ionic strength apparent) acidic dissociation
constant of the analyte in the complex. Value of this dissociation
constant is determined by dissociation constant of the free analyte
and complexation constants of the protonated and deprotonated
analyte forms, respectively:

K ′
a,HAS = K ′

a,HA

K ′
A−S

K ′
HAS

(9)

This model shows that under the constant pH, the two (proton-
ated and deprotonated) forms of the analyte act as a single analyte
form with the pH-dependent parameters �pH

0 , �pH
AS and K ′pH

AS . Later

on, Mofadel et al. [10] expressed the parameters K ′pH
AS , �pH

0 and �pH
AS

for bivalent acids. We  will further call this model (5) a “pH-overall
model” and the parameters (6)–(8) “pH-overall parameters”.

Somewhat opposite situation arises if a single analyte form (e.g.
strong, fully deprotonated acid) interacts with a mixture of selec-
tors, which is often encountered in practice [4,11–23]. Luire et al.
[24] have first described the interaction of a single analyte with
two selectors as a simple extension of Eq. (4) in 1994. This equa-
tion has then become a basis for further method optimization in the
dual-selector systems, predominantly in enantioseparations [25].
Similarly to the pH-overall model, Kranack et al. [26] and later us
[27] have shown that, effective mobility of an analyte (present in

a single free form) interacting with a mixture of selectors can be
expressed in a form of the SASS Eq. (4):

�eff = �0 + �M
ASK ′M

ASctot

1 + K ′M
ASctot

(10)

with

K ′M
AS =

N∑

j=1

K ′
Sj

�Sj
(11)

�M
AS =

∑N
j=1K ′

Sj
�Sj

�Sj

K ′M
AS

(12)

where ctot is the total concentration of the mixture of N selectors
(ctot =

∑N
j=1cSj

), �Sj
are fractions of the individual selectors in the

mixture, K ′
Sj

and �Sj
complexation constant and mobility of com-

plex of each particular selector with the analyte, and �0 is the
electrophoretic mobility of the free analyte. Eq. (10) demonstrates
that the mixture of selectors of a constant composition, �Sj

, which
interacts with the single analyte form, acts as a single selector with
an ostensible complexation constant and mobility of complex. We
will further call this model “M-overall model” and the parameters
(11) and (12) “M-overall parameters”. Eq. (10) is applicable to vir-
tually an unlimited number of selectors under the assumption (2).
It is useful for describing migration of a single analyte under inter-
action with a commercial mixture of selectors [28] as well as for
investigating separation characteristics, such as mobility difference
and selectivity, as a function of mixture composition, namely in the
dual selector mixtures [29].

The aim of this paper is to show that the dependence of the
effective mobility of the analyte on the selector concentration can
always be converted to the SASS formula (4) whenever the var-
ious forms of the analyte interact with an arbitrary number of
selectors, in 1:1 (analyte:selector) stoichiometry each. The “vari-
ous forms” of the analyte are not necessarily specified, although
the (de)protonated forms of acidic/basic analytes would certainly
be of the prime interest. We will denote the systems where multi-
ple forms of the analyte interact with multiple selectors as “MAMS
systems”. This paper focuses on a deep theoretical analysis of such
systems. We  provide the experimental investigation of the model
elsewhere [30].

2. Theory and discussion

2.1. The generalized overall model

Let an analyte A exists in L various (yet not complexed) forms:
A1, . . .,  Ai, . . .,  AL. Next, consider an arbitrary number of N selectors,
S1, . . .,  Sj, . . .,  SN, present in the system. Finally, let every form of
the analyte, Ai, undergo an interaction with each of the N selectors,
in 1:1 ratio exclusively:

Ai + Sj � ASij K ′
ij = [Ai][Sj]

[ASij]
(13)

where K ′
ij

is the (ionic strength apparent) complexation constant
between the ith form of the analyte and the jth selector. Then, for
the total (analytical) concentration of the analyte, cA, it applies

cA =
L∑

i=1

N∑

j=0

[Aij] (14)
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