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a  b  s  t  r  a  c  t

Performance  of  tile-based  Fisher  Ratio  (F-ratio)  data  analysis,  recently  developed  for  discovery-based
studies  using  comprehensive  two-dimensional  gas  chromatography  coupled  with  time-of-flight  mass
spectrometry  (GC  × GC–TOFMS),  is evaluated  with  a metabolomics  dataset  that  had  been  previously
analyzed  in  great  detail,  but  while  taking  a brute  force  approach.  The  previously  analyzed  data  (referred
to  herein  as the benchmark  dataset)  were  intracellular  extracts  from  Saccharomyces  cerevisiae  (yeast),
either  metabolizing  glucose  (repressed)  or ethanol  (derepressed),  which  define  the  two  classes  in the
discovery-based  analysis  to find  metabolites  that  are  statistically  different  in concentration  between
the  two  classes.  Beneficially,  this  previously  analyzed  dataset  provides  a concrete  means  to validate  the
tile-based  F-ratio  software.  Herein,  we demonstrate  and  validate  the  significant  benefits  of  applying  tile-
based  F-ratio  analysis.  The  yeast  metabolomics  data  are  analyzed  more  rapidly  in about  one week  versus
one  year  for  the  prior  studies  with  this  dataset.  Furthermore,  a null  distribution  analysis  is implemented
to  statistically  determine  an  adequate  F-ratio  threshold,  whereby  the  variables  with  F-ratio  values  below
the  threshold  can  be ignored  as  not  class  distinguishing,  which  provides  the  analyst  with  confidence  when
analyzing  the  hit  table.  Forty-six  of  the  fifty-four  benchmarked  changing  metabolites  were  discovered
by  the  new  methodology  while  consistently  excluding  all but  one  of the benchmarked  nineteen  false
positive  metabolites  previously  identified.

© 2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Knowledge of a biochemical system is incomplete without the
inclusion of the metabolome. The study of metabolomics attempts
to identify and quantify the low molecular weight compounds
which make up the metabolome [1]. Though not specifically men-
tioned in the central dogma of molecular biology [2], identified
metabolites generally complement and reinforce determinations
made of the genome and proteome. In other words, an up/down
regulated gene should correspond to a correlated change in the
proteome, which generally also induces some measureable change
in the metabolome [2]. Conversely, unexpected discoveries in the
metabolome could suggest changes in the upper realms of the
molecular biology hierarchy.
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Analytically, the metabolome can be approached in one of
two ways, targeted analysis or non-targeted analysis [1]. Tar-
geted analysis, attempts to verify previous genomic and proteomic
results through identification of complementary compounds in the
metabolome. Targeted approaches focus on expected changes in
the metabolome induced by up and down regulated genes and
proteins. The foreknowledge of interesting compounds enables the
analyst to define detailed methods and techniques to ensure the
targeted metabolites are identified and quantified to the necessary
level of fidelity. The alternative is to collect a biological sample
of interest and submit it for some form of broad analysis. These
non-targeted or discovery-based approaches employ non-specific
analytical procedures to identify metabolomic changes induced by
experimental or environmental perturbations.

Unlike targeted approaches which are amenable to specific
assays or similar techniques, non-targeted metabolic investigation
requires instrumentation that probes the sample in a wide-ranging
and general way. Instrumental platforms that provide the abil-
ity to simultaneously separate and identify the resultant sample
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components are desirable. Examples include liquid chromatog-
raphy (LC) [3], gas chromatography (GC) [4], mass spectrometry
(MS) [5], nuclear magnetic resonance spectroscopy (NMR) [6,7],
or various combinations of these techniques. Comprehensive
two-dimensional gas chromatography coupled with time-of-flight-
mass spectrometry (GC × GC–TOFMS) [1] is arguably one of the
best analytical instrumentation platforms to study metabolites
of interest that reside in the 50–500 Da mass range. The use of
GC–MS for metabolomics studies is widespread, but the benefits of
GC × GC–TOFMS applied to metabolomics have begun to emerge in
more recent years. While GC × GC–TOFMS is an outstanding instru-
mental platform for biological and metabolomics studies [8–26],
there is an ongoing need to develop software methods to glean use-
ful information from the immensely complex data. For this purpose
Fisher Ratio (F-ratio) analysis has been found to be a particularly
useful algorithm for the analysis of these complex datasets [27–31].

F-ratio analysis compares the variance between classes relative
to the variance within the classes [32–34]. Specifically, the F-ratio
compares whether these two variances are different relative to a
tabulated F-statistic or other means of threshold determination.
When the F-ratio is calculated, a quotient is determined, ranging
from zero to infinity; as the value increases the results suggests
with greater certainty that the compared variances are different
implying that the source data is also different. Points with high F-
ratios generally correspond to features which distinguish between
the classes compared. Previously, F-ratio analysis using GC × GC
data was applied to several biological and petrochemical models
[26–31]. The prior pixel-based F-ratio studies were fruitful, and
provide a benchmark for current software development and evo-
lution.

Specifically, Mohler, et al. [25,26] applied the F-ratio method
to intracellular extracts from Saccharomyces cerevisiae (yeast)
either metabolizing glucose (repressed) or ethanol (derepressed),
which define the two classes in the discovery-based analysis to
find metabolites that are statistically different in concentration
between the two classes. These data were studied in a “pixel-wise”
fashion whereby each data point (defined by chromatographic time
on column 1 (1D), chromatographic time on column 2 (2D), and
the mass-to-charge ratio (m/z)) across all the sample replicates
was compared as a subset to calculate an F-ratio, which statis-
tically quantifies the variances for the complete dataset at that
one data point pixel. The F-ratio calculation was repeated itera-
tively for every data point collected. Beneficially, the Mohler et al.
dataset was large and well defined biologically. Each culture was
thrice replicated providing three samples for each culture class.
Also, the samples were extracted in triplicate and each extraction
was chromatographically analyzed four times. The copious repli-
cation ensured the different sources of variance were sufficiently
quantified. The result of this study was a list of metabolites deter-
mined to be variant, or up/down regulated and hence changing,
between the two sample classes ordered by F-ratio value. The list,
referred to as a “hit list,” ordered the metabolites from greatest to
least F-ratio. This hit list was fully analyzed and quantified through
application of parallel factor analysis (PARAFAC) [35]. Usefully, this
analysis provided empirical evidence for biochemically suggested
metabolic pathways. Regrettably, the identification and quantifi-
cation of variant metabolites was onerous, since the true positives
were found to be intermingled with a significant number of false
positive, and data analysis consumed greater than a person-year
of labor to execute. The analyst was required to manually inter-
dict the process at many steps and analyze the hit list down to the
lowest level achievable without a useful means of deciding when
the hit list was complete. In retrospect, the analysis was specifi-
cally confounded by two issues we hope to elucidate and correct
in this current study: retention time shifting on 1D and 2D, and
undesirable false-positive discoveries.

Retention time shifting adds to the difficulty in the analysis
of any chromatographic dataset. In the Mohler, et al. study the
retention time shift reduced the sensitivity in which true positives
were discovered due to the pixel-based comparison of data. Since
the yeast experiment was conducted over the course of months
and required many extra chromatographic runs in addition to the
extracted samples (e.g. solvent blanks, growth medium blanks,
etc.), retention time shifting became especially pronounced. Tem-
perature and pressure fluctuations combined with matrix effects
and stationary phase degradation may  all lead to retention time
variations. Many times alignment [36,37] or warping [38] is cho-
sen as a solution to correct for retention time changes. Alignment,
while not particularly time consuming, can impart unfortunate arti-
facts to the data as the peaks are warped and time-shifted. The
tile-based F-ratio software is designed to address this challenge
without explicitly requiring alignment [29,30].

The other challenge, how to minimize the false positive discov-
eries, is tied to determining a useful F-ratio threshold value under
which further analysis is deemed fruitless. Statistics has come up
with two schools of thought on the topic of threshold determina-
tion [39,40]. One has the analyst consult a tabular solution for the
applied statistic, in this case the F-test. Based on the degrees of free-
dom and number of samples, the analyst determines an F-critical
value and judges that all features with calculated F-ratios greater
than F-critical do significantly differ between/among classes. The
other school of thought, less well known outside statistics circles,
suggests that the tabulated values for the textbook distribution
may  not accurately apply to the experiment at hand. This group
is known as the “frequentists.” The frequentist camp approaches
the problem of determining the threshold with the expectation that
every experiment includes many underlying random and statistical
errors which may  not be appropriately represented by a Bayesian
Distribution.

To address this challenge of determining an appropriate thresh-
old to prudently guide hit list data mining, combinatorial null
distribution analysis is coupled with tile-based F-ratio analysis
[30,31], leveraging the large volume of related data that may be
tested by GC × GC–TOFMS to experimentally determine the dis-
tribution of potential false positives. By rearranging the sample
classes to nullify the class distinguishing variance, the effects of
non-meaningful variation in the dataset may  be estimated for the
true class comparison. To increase the extensibility of the approach,
it is desirable to determine all possible null comparisons in a rigor-
ous and automated fashion. With the recent improvements to the
computational performance of the software, it is now possible to
glean the benefits of using the complete set of null distributions.
By algorithmically determining all possible null combinations it is
possible to utilize the resulting Fisher Distributions to determine a
rigorous threshold.

Herein tile-based F-ratio analysis is evaluated and validated by
application to the already thoroughly analyzed fermenting and
respiring yeast benchmark dataset from the Mohler et al. study
[26]. These data were completely identified and quantified pre-
viously and provide an insightful opportunity to compare the
tile-based F-ratio analysis [29–31], which in turn had evolved
from pixel-based F-ratio analysis [26–28]. The novelty of the
study herein is based upon the simultaneous demonstration of
improved F-ratio analysis software performance for a complex
metabolomics dataset, which is manifested as a decisive improve-
ment in the ranking of true positive hits above false positive
hits, in concert with the demonstration that the null distribu-
tion threshold accurately identifies this optimized transition from
true positive hits to false positive hits in the hit list. In addition,
quantification by ChromaTOF (LECO software) is utilized in lieu
of PARAFAC to demonstrate the possibilities of rapid peak find-
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