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a  b  s  t  r  a  c  t

Band  broadening  in  size-exclusion  chromatography  (SEC)  is always  present  to some  extent.  Broadening
effects  on  averages  such  as  the  weight-  and  number  average  molecular  weights  (MW and  Mn respectively)
are  minimal  with  modern  SEC  systems.  However,  broadening  distorts  the  shape  of  the  true  molecular
weight  distribution  (MWD),  which  causes  problems  if one  wants  to compare  the  detailed  form  of  the
MWD  to  a model.  An addition  to  current  methods  for overcoming  this  problem  is  presented.  One  starts
with  a sufficiently  wide  range  of samples  whose  exact  values  of Mn andMW have  been  measured  by  non-
SEC  methods  (e.g. by  fluorimetry  and  light  scattering,  respectively,  of  the  sample  without  size separation).
A  true (unbroadened)  molecular  weight  distribution  for a sample  can  be obtained  by  deconvolution  (here
using a maximum-entropy  algorithm)  by fitting  SEC  data  for these  samples  to  these  exact  Mn and  MW

values  to find  the values  of  the  parameters  in a sufficiently  flexible  assumed  broadening  function.  This
was modelled  using  simulated  band  broadening  and  subsequent  deconvolution,  with  the  broadening
parameters  least-squares  fitted  to the  “exact”  sets of  values  of  Mn and MW. The  results  show  that  if these
Mn and  MW values  are  for  a series  of broad  (not  narrow)  standards  covering  a  sufficient  range  of molecular
weight,  then  after  deconvolution,  a good  representation  of  the  original  molecular  weight  distribution  used
in the simulation  is  obtained.  The  method  should  prove  useful  for water-soluble  polymers,  for  which  it is
often  difficult  to obtain  narrow  standards  of a  wide  range  of molecular  weight,  as  required  in  a  number
of  well-established  methods  for correcting  for band  broadening.

©  2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Size-exclusion chromatography (SEC, sometimes called GPC)
separates molecules by molecular size. Band broadening (BB) is
always present, causing a perfectly monodisperse sample to elute
over a range of elution time (or elution volume) [1]. Effects from this
artifact are relatively small with modern SEC set-ups, and do not
cause very large errors in averages such as the weight- and number-
average molecular weights, MW and Mn [2]. However, they pose a
problem with the detailed shape of the molecular weight distri-
bution (MWD). For example, theory [3] indicates that the number
MWD formed at any point in a free-radical polymerization should
closely follow a single exponential form and thus be linear in a
logarithmic plot, but BB causes curvature in such a plot [4].
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There are a number of methods for correcting for BB. Methods
employing various types of mass spectrometry can be very accurate
(e.g. [5–7]), but these techniques cannot be applied to many poly-
mer  systems, e.g. those containing very high molecular weights.
Some quantifications of this effect are as follows. The van Deemter
equation [8] is used to quantify the BB effect by combining various
terms for multiple paths, longitudinal diffusion and equilibration
time. “Darcy’s law” [9] is widely used for the quantitative analysis
of flow in porous medium systems. The Tung convolution equation
is the most common approach (see below), where BB effects are
described by a BB function in a convenient form.

Several procedures have proposed to correct for BB, e.g. [10–17].
Some newer methods focus on describing calibration approach
which involve simultaneously the use of SEC and multi-angle light
scattering (MALS) techniques [13–16]. As one example, Suarez et al.
[16] developed a method [16] based on diffusion effects.

For some applications, it is important to obtain an accurate
shape of the MWD,  which requires finding the BB function. Once
this function has been obtained, various methods [18] can be
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employed to invert the convolution equation to obtained the true
size distribution of a given analyte sample.

The best method for finding this BB function is to determine it
directly using ultra-narrow standards [18], but this is extremely
laborious and expensive. There are a number of methods requir-
ing moderately narrow standards (see, e.g. [19–21] for summaries
of these methods and other BB effects in SEC). However, obtaining
narrow standards over a wide range of M is sometimes difficult,
especially in the case of water-soluble polymers where com-
mon  methods, such as anionic polymerization, often cannot be
employed. As pointed out elsewhere [19], this problem cannot be
overcome by using multiple detection alone, because, for example,
measuring absolute molecular weight using in-line light scattering
detection will not help because each elution slice still contains a
range of molecular weights.

Here we present a new method which should be applicable to
a wide range of analytes and which uses broad (rather than nar-
row) standards, which are relatively easy to prepare or obtain. The
principle is as follows. For a given polymer, our method uses exact
values of Mn and MW obtained without BB artifacts (i.e. without size
separation by SEC), which can be done by several means. Mn can
be measured by osmometry or by employing quantitative labeling
and fluorimetry; quantitative labeling can be implemented by tech-
niques appropriate to the analyte, e.g. through reaction with the
chemically-unique end-group for the water-soluble �-(1 −→ 4)-
linked linear molecules obtained by enzymatically debranching
starch [22]. MW can be measured by multiple-angle laser light scat-
tering without size separation. We  show here that if these Mn and
MW data are obtained for a sufficient number of polydisperse sam-
ples covering a sufficiently wide range of molecular weight, then
the parameters in the BB function can be obtained by least-squares
fitting to SEC signals for these samples. Given this function, BB can
be corrected by solving the convolution equation relating the SEC
signal and the actual MWD.

In this paper, simulations using realistic parameters are used
to test if the technique should be able to work in the laboratory.
The parameters chosen are applicable to �-(1 −→ 4)-linked linear
glucose polymers.

If the analyte is a linear polymer, there is a one-to-one cor-
respondence between this size and molecular weight M;  for
notational simplicity; the present paper only considers linear poly-
mers, although the method is equally well applicable to branched
ones, with hydrodynamic volume replacing mass throughout.

As noted by a reviewer, BB can be caused by chromatographic BB,
interdetector BB, or a combination of both. The present method only
uses SEC data from a single detector, the concentration-dependent
differential refractive index detector, so interdetector BB will not
be present. If multiple detectors were to be used, the method would
be applied separately to the signal for each detector.

2. Theory/calculation

BB is quantified by the Tung convolution equation [23], which
is here written in a convenient form for numerical evaluation:

S(V) =
∞∫

−∞

G(logM, V)w(logM)d(logM) (1)

Here S(V) is the detector signal at a given elution volume V, w(logM)
is the true (unbroadened) weight SEC distribution (so named
because it is the signal that would be obtained using a differen-
tial refractive index detector in an ideal SEC system without BB and
with a linear calibration curve), and G(logM, V) is the BB function.
It is assumed that a calibration curve Vc(logM) relating molecular
weight (from relatively narrow standards) to V is available. If BB

were absent, then one can obtain the SEC weight distribution from
the detector signal using (e.g. [24]):

w(logM) = S(V)
dVc(logM)
d(logM)

|
V=Vc(logM)

(2)

All distributions used here have arbitrary normalization unless oth-
erwise stated.

Three types of function have some usage as broadening func-
tions: the standard Gaussian function, the exponentially modified
Gaussian (EMG), the exponentially-Gaussian hybrid (EGH) function
and the rarely-used Giddings-Eyring function [25]. The first can-
not adequately account for the observation that the peak shapes
of ultranarrow standards in SEC are systematically skewed and the
width of spreading can vary with molecular weight [17]. The other
two functions can take this into account, but the EMG  does not lend
itself to physical interpretation [26]. For this reason, the BB func-
tion is taken to be an EGH [27] (although any appropriate function
could be used):

G (logM, V ; �, �)

=

⎧⎨
⎩

1
C

exp

(
−(V − VC (M))2

2�2 + �(V − VC (M))

)
, 2�2 + �(V − VC (M)) > 0

0, 2�2 + �(V − VC (M)) ≤ 0
(3)

where � and � are the BB parameters and C is a normalization
constant.

Our simulation procedure to test the method is as follows. We
assume a set of exact I = 1, . . .,  n distributions w(logM), wI(logM).
From these, simulated “exact” Mn,I and MW ,I values for each set
(as could be obtained from quantitative labeling/fluorescence and
light scattering, respectively) are calculated using:

M̄n,exact =
∫ ∞

0
MN (M) dM∫ ∞

0
N (M) dM

; M̄w,exact

=
∫ ∞

0
M2N (M) dM∫ ∞

0
MN (M) dM

; N (M) = w (logM)

M2
(4)

where N(M) is the number MWD.
Simulated broadened SEC distributions wsim,I(logM) are calcu-

lated from these exact wI(logM)  in the present case using various
values of �exact and �exact, using Eqs. (1) and (2). The least-squares
fitting procedure to obtain simulated values of � and � is then as
follows. (1) Start with assumed values of � and �. (2) Invert the
deconvolution equation, Eq. (1), with these values to obtain first
estimates of the deconvoluted values of w(logM). (3) Use these cal-
culated w(logM) to find Mn and MW for these values of � and � for

each sample,M
calc◦I
n (�, �) and M

calc◦I
W (�, �). The values of � and � are

obtained by least-squares minimizing the function:

� =
∑

I=1....n

([
[M

calc◦I
n (�, �) −  Mn,I

]2
−

[
M

calc◦I
w (�, �) − Mw,I

]2
)

(5)

The method is illustrated in Fig. 1.
The convergence criterion used here is that the changes in the

sum of [
∫

|wI(logM)  −wI-  - 1(logM)| d logM]/
∫

|wI(logM)|  d logM
over all samples is less than a chosen tolerance (here 10–7). The
minimization uses the Metropolis importance sampling method
(see Supplementary information) [28].

The form of the assumed “exact” wI(logM)  used to generate the
assumed “exact” Mn,I and MW ,I and the broadened w(logM) is sums
of a single-exponential N(M):

N (M) =
∑
i=1,3

aie
−M/˛, w (logM) = M2N (M) (6)
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