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The first accurate measurements of the α-decay branching ratio and half-life of the Iπ = 1/2+ ground 
state in 181Tl have been made, along with the first determination of the magnetic moments and I = 1/2
spin assignments of the ground states in 177,179Au. The results are discussed within the complementary 
systematics of the reduced α-decay widths and nuclear g factors of low-lying, Iπ = 1/2+ states in the 
neutron-deficient lead region. The findings shed light on the unexpected hindrance of the 1/2+ → 1/2+, 
181Tlg → 177Aug α decay, which is explained by a mixing of π3s1/2 and π2d3/2 configurations in 177Aug , 
whilst 181Tlg remains a near-pure π3s1/2. This conclusion is inferred from the g factor of 177Aug which 
has an intermediate value between those of π3s1/2 and π2d3/2 states. A similar mixed configuration is 
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Gold nuclei
Thallium nuclei

proposed for the Iπ = 1/2+ ground state of 179Au. This mixing may provide evidence for triaxial shapes 
in the ground states in these nuclei.

© 2018 Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Low-energy shape coexistence, whereby states of differing 
shape compete at low-excitation energies within the same nu-
cleus, is an intriguing and complex facet of nuclear structure [1]. 
This phenomenon results from an interplay between two opposing 
behaviours: the stabilising effect of shell closures which preserves 
sphericity, and residual interactions between protons and neutrons 
that drive deformation [2]. However, the description of such be-
haviour remains a challenge for contemporary nuclear theory.

To simplify the description of this complex phenomenon, theo-
retical models often invoke axial and reflection symmetries. How-
ever, as highlighted in e.g. Ref. [3] for germanium isotopes, the use 
of such restrictions may lead to problems. In particular, coexist-
ing energy minima at different quadrupole deformations could be 
connected by a valley of triaxiality, along which the true energy 
minimum lies. Therefore, special care should be taken when mod-
elling nuclei that inhabit known or expected regions of triaxiality.

The neutron-deficient gold (Z = 79) isotopes have proved to 
be fertile ground for the study of shape coexistence and triaxial-
ity [4–14]. The ground-state structures of odd-mass gold isotopes 
are seen to gradually evolve as the mass reduces down to A = 187
(N = 108). This is evidenced by their g factors, spins and pari-
ties which change from those of near-pure π2d3/2 configurations 
with Iπ = 3/2+ for the odd-A isotopes with A � 191, to mixed 
π2d3/2/π3s1/2 states with Iπ = 1/2+ in 187,189Au [15,4]. How-
ever, these nuclei are seen to retain weakly oblate (near spheri-
cal) shapes. A more dramatic change in structure is seen below 
A = 187, with a large increase in the mean-squared charge ra-
dius indicating a sudden increase in the ground-state deforma-
tion [5–7]. This transition from weakly oblate to strongly prolate 
shapes makes these nuclei of particular interest for investigating 
coexisting structures within the region. The large increase in de-
formation is accompanied by a change in the ground-state config-
uration to the 5/2− member of the band, based upon the strongly 
prolate 1/2[541] and/or 3/2[532] deformed states of a π1h9/2
parentage, as was proposed for 181,183,185Au in Refs. [4,16,17]. The 
ground states of the neutron-deficient gold isotopes were predicted 
to stay strongly deformed until A ≈ 177, where a return to near-
spherical shapes was proposed to occur (see Fig. 31 in Ref. [18]). 
However, results from in-beam and α-decay studies suggest that 
this region of strong deformation ends earlier, at A = 179, where 
it is proposed that the ground state returns to a π2d3/2/π3s1/2
configuration [19–21].

Evidence for triaxial shapes has been found in the neighbour-
ing platinum isotopes. In particular, the magnetic moments of the 
lowest 3/2− states in the odd-A isotopes 187−193Pt were shown 
in Ref. [22] (see Fig. 6 therein) to have a strong dependence on 
the triaxial deformation parameter, γ . Gold isotopes, which can 
be viewed as a proton coupled to a platinum core, may also dis-
play such behaviour. Signatures of triaxiality have been seen in 
the excited states of some gold isotopes (see Refs. [23,11–13] and 
references within). Thus, it may be possible to observe signs of tri-
axiality in ground-state magnetic moments of gold nuclei, similar 
to those seen in the neighbouring platinum isotopes.

This article reports on a two-pronged experimental study of 
the ground and isomeric states of thallium and gold isotopes. 
First, an α-decay study of the I = 1/2+ ground state in 181Tl 

(T1/2 = 3.2(3) s [24]) was performed to investigate the unexpected 
hindrance to the decay observed in a study by Andreyev et al. [25], 
at the velocity filter SHIP (GSI). In this work, the authors deduced 
an upper limit for the α-decay branching ratio of bα(181Tlg) < 10%, 
which resulted in an upper limit for the reduced α-decay width 
of δ2

α < 19 keV. The latter is notably smaller than those of other 
unhindered 1/2+ → 1/2+ α decays in the region, which typically 
have values of δ2

α = 45 −90 keV. This raises the question as to the 
possible cause of hindrance in the 181Tlg α decay. Recent mean-
squared charge radii measurements by Barzakh et al. [26] show 
181Tlg to be nearly spherical, with a magnetic moment in good 
agreement with values for the I = 1/2+ states in other odd-A thal-
lium isotopes, which have near-pure π3s1/2 configurations. This 
proves that there is nothing unusual with the underlying structure 
of 181Tlg . Therefore, the main goals of the present work were to 
extract a value for bα and the half-life (T1/2) of 181Tlg , in order to 
confirm or disprove the hindrance observed in Ref. [25].

On the other hand, a difference in configurations between 
181Tlg and its α-decay daughter nucleus, 177Aug , could explain this 
hindrance. Prior to this work, 177Aug was tentatively assigned a 
spin of Iπ = (1/2+, 3/2+), based on the in-beam study by Kon-
dev et al. [21], with the most likely configuration being either 
1/2+[411](d3/2) at oblate deformation with some admixture from 
π3s1/2, or a prolate 3/2+[402](d3/2) state.

Therefore, in-source laser spectroscopy measurements of 177Aug

were performed. The present work provides the first unambiguous 
measurements of the spins and magnetic moments of 177,179Aug . 
The new results for 181Tlg and 177,179Aug will be discussed within 
the context of the systematics of reduced α-decay widths for 
1/2+ → 1/2+ α decays and nuclear g factors of I = 1/2 states 
within the region.

2. Experiment

Two experimental campaigns were performed for the isotopes 
181Tlg and 177,179Aug . In both cases the experimental method was 
the same as that employed in the studies of the thallium isotopic 
chain presented in Refs. [26,27]. Additional details pertinent to the 
present work are given below. The radioactive thallium and gold 
nuclei were produced at the ISOLDE facility [28,29], in spallation 
reactions induced by a 1.4-GeV proton beam, impinged upon a 
50 g/cm2-thick UCx target. The proton beam was delivered by the 
CERN PS Booster with an average current of 2.1 μA, in a repeated 
sequence known as a supercycle that typically consisted of 35–40, 
2.4-μs long pulses, with a minimum interval of 1.2 s between each 
pulse.

After proton impact the reaction products diffused through the 
target matrix and effused towards a hot cavity ion source, kept 
at a temperature of ≈2000 ◦C. Inside the cavity, the thallium or 
gold atoms were selectively ionised by the ISOLDE Resonance Ion-
ization Laser Ion Source (RILIS) [30,31]. The ions were then ex-
tracted from the cavity using a 30 kV electrostatic potential and 
separated according to their mass-to-charge ratio by the ISOLDE 
GPS mass separator. The mass-separated beam was then delivered 
to either the ISOLTRAP Multi-Reflection Time-of-Flight Mass Spec-
trometer (MR-ToF MS) [32] or the Windmill decay station [33,34], 
for photoion monitoring during RILIS laser-wavelength scans across 
the hyperfine structure (hfs) of an atomic transition used in the 
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