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a  b  s  t  r  a  c  t

The  development  of  quantitative  structure–retention  relationships  (QSRR)  aims at  constructing  an  appro-
priate  linear/nonlinear  model  for the prediction  of  the  retention  behavior  (such  as  Kovats  retention
index)  of a solute  on a  chromatographic  column.  Commonly,  multi-linear  regression  and  artificial  neural
networks  are  used  in  the  QSRR  development  in  the gas  chromatography  (GC).  In  this  study,  an  arti-
ficial  intelligence  based  data-driven  modeling  formalism,  namely  genetic  programming  (GP),  has  been
introduced  for  the  development  of  quantitative  structure  based  models  predicting  Kovats  retention  indices
(KRI). The  novelty  of  the  GP  formalism  is that  given  an  example  dataset,  it searches  and  optimizes  both
the  form  (structure)  and  the  parameters  of an  appropriate  linear/nonlinear  data-fitting  model.  Thus,  it is
not  necessary  to  pre-specify  the  form  of  the  data-fitting  model  in the  GP-based  modeling.  These  models
are  also  less  complex,  simple  to  understand,  and  easy  to deploy.  The  effectiveness  of GP  in  constructing
QSRRs  has  been  demonstrated  by developing  models  predicting  KRIs  of  light  hydrocarbons  (case  study-I)
and adamantane  derivatives  (case  study-II).  In each  case  study,  two-,  three-  and  four-descriptor  models
have  been  developed  using  the  KRI  data  available  in the  literature.  The  results  of  these  studies  clearly
indicate  that  the  GP-based  models  possess  an  excellent  KRI  prediction  accuracy  and  generalization  capa-
bility. Specifically,  the  best  performing  four-descriptor  models  in  both  the  case  studies  have  yielded  high
(>0.9)  values  of the coefficient  of  determination  (R2) and  low  values  of  root  mean  squared  error  (RMSE)  and
mean  absolute  percent  error  (MAPE)  for training,  test  and  validation  set  data. The  characteristic  feature
of  this  study  is  that it introduces  a practical  and  an  effective  GP-based  method  for  developing  QSRRs  in
gas  chromatography  that  can  be  gainfully  utilized  for developing  other  types  of data-driven  models  in
chromatography  science.

©  2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Gas chromatography (GC) is a powerful analytical tool used
widely in the separation and identification of components in a mix-
ture. The retention time of a solute in a GC column depends on
the various interactions that it makes with the stationary phase.
The structure and properties of the solute and the stationary phase
decide the kind of interactions that take place during separation.
The identification of the separated compounds is based on the com-
parison of retention times of the reference standard and the sample.
Since retention times vary with the instrumental conditions, Kovats
introduced a system-independent and universal scheme termed
Kovats retention index (KRI) [1] for reporting the retention times
in a conventional one-dimensional (1D) GC separation. It uses
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n-alkanes as the standard references and the retention index (KRI)
of an n-alkane is assigned a value equal to 100 times its carbon
number. The index normalizes the instrumental variables in the
GC, allowing the retention data generated on different systems to
be compared. KRI of a solute at an isothermal column temperature
can be calculated from the following equation:

KRI = 100
[

n + (N − n)
(

log t′
r (unknown) − log t′

r (n)
log t′

r (N) − log t′
r (n)

)]
(1)

where N is the number of carbon atoms in the larger alkane
molecule, n denotes the number of carbon atoms in the smaller
alkane molecule, t′

r (n) represents the adjusted retention time of
the smaller alkane, and t′

r (N) refers to the adjusted retention time
of the larger alkane.

Quantitative structure–retention relationships (QSRRs) [2] rep-
resent the mathematical/statistical models, which using the
solutes’ structural parameters as inputs, predict their chromato-
graphic retention times or related parameters. These correlations
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predict the retention data from the structure and properties of
the solute molecules and also help in understanding the possible
mechanisms of absorption and elution in the gas chromatography
[3,4]. The knowledge of the relationship between the structure and
the corresponding retention of isomers can significantly assist in
accurately assigning a structure to an unknown compound from
numerous isomeric alternatives [5].

The common approach to build a QSRR consists of the follow-
ing steps: (i) development (or selection) of the descriptors for the
molecular structure of the solutes, (ii) usage of an appropriate
mathematical method to set up the model, and (iii) evaluation of
the prediction and generalization ability of the developed model
[6]. Studies on QSRRs form an important continuing activity in
the chromatographic thermodynamics. In the contemporary gas
chromatography, the QSRR approach is typically employed for the
modeling of Kovats and linear temperature-programmed retention
indices [7]. A representative list of the QSRR studies pertaining to
the gas chromatography and presenting KRI prediction models for a
variety of solutes and stationary phases is provided in Table 1 (also
see Heberger [3], Bermejo et al. [8] and Kaliszan [48–50]).

From Table 1, it is noticed that the multilinear regression (MLR)
and artificial neural networks (ANNs) are the two  most com-
monly utilized methods for developing QSRRs. The MLR is a linear
modeling technique, while ANNs perform a nonlinear function
approximation. In situations where the relationship between the
molecular descriptors and the KRI is nonlinear, the MLR  method
performs poorly and a nonlinear modeling method such as the
multilayer perceptron (MLP) neural network needs to be explored.
Although an efficient nonlinear modeling method, for a typical lab-
oratory worker the drawback of the MLP  is its complexity [38].
Also, the “black-box” nature of the ANN-based models poses sig-
nificant difficulties in interpreting the model parameters (network
weights) in terms of the data used in the model construction. Owing
to their complex architecture, the MLP-based mathematical mod-
els are often found difficult to understand and deploy in a practical
setting.

The field of artificial intelligence (AI) comprises a data-driven
modeling paradigm, namely “genetic programming (GP).” It was
proposed [51,52] as a systematic method for getting computers to
automatically solve a pre-defined problem starting from a high-
level statement of what needs to be done. The GP formalism has
another important application, namely symbolic regression (SR),
which is of interest to this study. Upon provided with (a) an example
data set consisting of the values of the dependent and independent
(predictor) variables, and (b) the form of the data-fitting function,
the conventional linear and nonlinear regression analyses estimate
the parameters associated with the function. The SR formalism is
different than these types of regression analyses. It possesses fol-
lowing characteristics [53–55]: (i) SR searches the space of the
mathematical expressions, while minimizing various error metrics,
(ii) it simultaneously searches both, an appropriate linear or a
nonlinear form (structure) and the associated parameters of a func-
tion that fits the given example data optimally, (iii) SR makes no
assumptions regarding the form of the probable data-fitting func-
tions, (iv) the optimal expressions searched and optimized by SR
are of low complexity and therefore easy to deploy, (v) it is capa-
ble of identifying the key predictors and their combinations in the
data, and (vi) the obtained models are amenable to the human
interpretation and help explicate the observed phenomena under-
lying the example data. Despite its several attractive properties and
significant potential, the GP-based SR has not been utilized as fre-
quently as ANN and support vector regression (SVR) formalisms in
the various science, engineering and technology branches. Some
of the applications of the GP in chemical sciences and engineer-
ing, are soft-sensor development for biochemical systems [55],
fermentation modeling [56], electronic nose [57], synthesis of

heat-integrated complex distillation systems [58], classification of
Raman spectra [59], optimization of a controlled release pharma-
ceutical formulation [60], modeling of a nanofiltration process [61],
prediction of higher heating values of biomasses [62] and multiple
alignment of liquid chromatography–mass spectrometry data [63].

An exhaustive literature search (also see Table 1) has revealed
that the GP formalism has not been used in the development of
QSRRs; it has also been rarely employed in the chromatography
science. Accordingly, the objective of this paper is to introduce the
GP technique as an attractive alternative to MLR, ANN, and other
data-driven modeling formalisms for developing QSRRs. The effec-
tiveness of the GP has been demonstrated by developing QSRRs
for the prediction of Kovats retention indices for two  sets of com-
pounds namely, light hydrocarbons (case study-I) and adamantane
derivatives (case study-II). In both the case studies, GP-based KRI
models have been developed using two, three and four molecu-
lar descriptors as inputs. The results of these case studies clearly
reveal that the GP-based QSRRs possess an excellent KRI predic-
tion accuracy and generalization capability. For affording a rigorous
comparison of the performance of the GP-based QSRRs, KRI predict-
ing nonlinear models have been developed using the MLP  neural
networks. This comparison indicates that although the KRI predic-
tion accuracies of the GP- and MLP-based QSRRs are comparable,
the models belonging to the former category possess a superior
generalization capability.

The remainder of this paper is structured as follows. In the
second section titled “Methods,” an overview of the genetic pro-
gramming based symbolic regression is presented first, followed
by its stepwise procedure. Section 3 titled “Results and Discussion”
begins with the explanation of the molecular descriptors used in
the development of the GP-based KRI prediction models; next, this
section provides the details of the two  case studies wherein the
GP-based QSRRs have been developed for the prediction of KRIs in
respect of the light hydrocarbons and adamantane derivatives. Both
these case studies also present results of the sensitivity analysis of
the seven molecular descriptors used in the GP-based modeling.
Finally, “Conclusion” section summarizes the main findings of this
study.

2. Methods

2.1. GP-based symbolic regression

Given a multiple input–single output (MISO) example dataset,
D, consisting of Npat number of input–output patterns, the task of
the GP-based symbolic regression is to obtain an appropriate lin-
ear/nonlinear form and the associated parameters of a function (f)
that best-fits the input–output data. Each pattern in the dataset
contains L inputs (x1, x2, . . .,  xL) and a single output (y), and the
generalized form of the equation to be fitted is given by:

y = f (x1, x2, . . .,  xl, . . .,  xL; ˇ1, ˇ2, . . .ˇj, . . .,  ˇJ) (2)

where ˇj (j = 1,2,. . .,  J) denotes a function parameter [62].
The GP-based symbolic regression is an iterative procedure. It

begins with generating a population consisting of a pre-specified
number of randomly formed equations (candidate/probable solu-
tions). These compete to model—in the most parsimonious
way—the given example data set consisting of the input (descrip-
tor/predictor/independent) and dependent (output) variables. The
candidate solutions are commonly coded in the form of “tree struc-
tures.” The SR method forms a new generation of solutions using
four steps, namely, fitness evaluation,  selection, crossover and muta-
tion. Here, new candidate equations are generated by recombining
the previous equations (crossover) and probabilistically varying
their sub-expressions (mutation).
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