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a  b  s  t  r  a  c  t

General  equations  are  derived  for the  distribution  of  minimum  resolution  between  two  chromatographic
peaks,  when  peak  heights  in  a multi-component  chromatogram  follow  a continuous  statistical  distribu-
tion.  The  derivation  draws  on published  theory  by  relating  the  area  under  the  distribution  of  minimum
resolution  to the area  under  the  distribution  of  the  ratio  of  peak  heights,  which  in turn  is  derived  from  the
peak-height  distribution.  Two  procedures  are  proposed  for the  equations’  numerical  solution.  The  proce-
dures are  applied  to  the  log-normal  distribution,  which  recently  was  reported  to  describe  the distribution
of component  concentrations  in  three  complex  natural  mixtures.  For  published  statistical  parameters  of
these  mixtures,  the  distribution  of  minimum  resolution  is  similar  to that  for  the  commonly  assumed
exponential  distribution  of  peak  heights  used  in  statistical-overlap  theory.  However,  these  two  distribu-
tions  of  minimum  resolution  can  differ  markedly,  depending  on the  scale  parameter  of  the log-normal
distribution.  Theory  for the  computation  of  the  distribution  of  minimum  resolution  is extended  to  other
cases  of  interest.  With  the  log-normal  distribution  of peak  heights  as  an  example,  the  distribution  of
minimum  resolution  is computed  when  small  peaks  are  lost  due  to  noise  or  detection  limits, and  when
the  height  of at least  one  peak  is less  than  an upper  limit.  The  distribution  of  minimum  resolution  shifts
slightly  to lower  resolution  values  in  the first  case  and  to  markedly  larger  resolution  values  in  the  second
one.  The  theory  and  numerical  procedure  are  confirmed  by  Monte  Carlo  simulation.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In a recent paper, Enke and Nagels presented evidence that
the component concentrations in natural mixtures of metabolytes,
light crude oil, and plant extracts follow a log-normal distribution
(LND) [1]. By determining parameters of the LND for these mix-
tures, they were able to estimate the total number of components
that are potentially detectable, predict the degree of analytical
selectivity and dynamic range needed to detect any additional
fraction of undetected components, and investigate the relation-
ship between undetected components, and background levels and
chemical noise.

The findings of Enke and Nagels differ from those in several
earlier studies, which suggested on theoretical [2,3] and experi-
mental [2,3–7] grounds that component concentrations in complex
mixtures follow an exponential distribution. The LND predicts that
the component density (i.e., the number of components per unit
of concentration) maximizes at an intermediate concentration and
approaches zero as the concentration approaches zero. In contrast,
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the exponential distribution predicts that the component density
maximizes as the concentration approaches zero. Because of the
possible overlap of signals that one must interpret to evaluate the
component density, the low-concentration region can be difficult
to measure. Thus, it is possible that previous work based on an
exponential distribution is biased.

In general, the distribution of component concentrations
determines the distribution of their signal intensities, since con-
centration and signal are related by the response factor. In
chromatography and related methods, the signal intensities are
peak heights (or peak areas, which are proportional to peak
heights), whose distribution in turn affects the distribution of the
minimum resolution needed to separate neighboring peaks. The
average of this distribution of minimum resolution is an important
metric of statistical-overlap theory (SOT), which relates the number
of observed peaks (e.g., maxima) and the number of peaks produced
by mixture components. Most calculations in SOT are based on the
assumption that peaks heights follow an exponential distribution.

In this paper, general equations are derived for the distribu-
tion of minimum resolution, based on a theory of Felinger [8]. Two
procedures are proposed for their numerical solution. With these
procedures, the distribution of minimum resolution is computed
numerically for a LND of peak heights. This distribution then is
compared to that for exponentially distributed peak heights, and
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the bias in earlier SOT calculations is evaluated. The theory for
the distribution of minimum resolution also is expanded to other
problems of interest, using the LND as an example. Specifically, the
distribution of minimum resolution is computed when small peaks
are lost due to noise or detection limits, and when the height of at
least one peak is less than an upper limit.

2. Theory

2.1. Review

Consider a multi-component separation in which the heights (or
areas) of peaks follow a statistical distribution. Although the heights
actually are governed by deterministic attributes (e.g., metabolic
processes, biodegradation, etc.), their adherence to a statistical dis-
tribution allows them to be treated as a random variable. Ideally,
the response factor is the same for all mixture components, such
that the distributions of peak height and component concentration
are the same. In fact, the response factors of components typically
vary, and the two distributions differ.

The theory of the distribution of minimum resolution (or simply
resolution distribution) was developed by Felinger [8].  He derived
the equation (cited below) relating the ratio of the heights of two
Gaussian peaks of equal standard deviation to the minimum resolu-
tion required to produce two maxima. He interpreted this relation
as a survival function, whose negative derivative is the resolution
distribution for peaks with uniformly distributed heights. With a
cumulative distribution derived by Feller [9],  Felinger then used
the inverse probability integral transform (which maps a uniform
distribution into a non-uniform one) to derive the resolution distri-
bution for peaks having an exponential distribution of heights. All of
Felinger’s results were expressed by closed-form expressions. Here,
general equations are proposed for the resolution distribution, and
numerical approaches are proposed to solve them. However, the
principles underlying this work, which are now reviewed, are those
of Felinger.

Panel a of Fig. 1 is a graph of a peak-height distribution g(h) vs.
the peak height h. In this graph, g(h) is the LND for parameters
specified in the figure caption. However, the underlying princi-
ples apply to any continuous g(h); the LND is simply shown as an
example. The differential area g(h)dh is the probability that a ran-
dom peak height lies between h and h + dh (the differential areas of
other distributions discussed below can be interpreted similarly).
The random selection of two peak heights, h1 and h2, from this dis-
tribution determines the ratio r = h2/h1, defined so that 0 ≤ r ≤ 1 (i.e.,
h2 always is the smaller peak height, unless r = 1). This ratio itself is
a random variable and has its own distribution f(r), which is called
the ratio or quotient distribution and is shown in panel b of Fig. 1
(general aspects of the ratio distribution and other examples of it
are discussed in Section 2.1 of the Supplementary material). Since
the peak heights determining f(r) in panel b are chosen randomly,
they can belong to two adjacent peaks. In this case, the ratio dis-
tribution f(r) in panel b is connected to the distribution w(Rs) of
minimum resolution Rs of these peaks, which is shown in panel c.
In summary, the distributions in panels a–c are connected, because
the distribution of peak heights in a chromatogram (panel a) causes
adjacent pairs of peaks to have different peak-height ratios (panel
b), which in turn causes the minimum resolution needed to sep-
arate them to vary (panel c). The connection is expressed more
rigorously by Felinger’s equation relating the peak-height ratio r
to the minimum resolution Rs required to separate two Gaussian
peaks with equal standard deviations into two maxima [8]

r = (
√

4R2
s − 1 + 2Rs)

2
exp(−4Rs

√
4R2

s − 1) (1)

Eq. (1) states that two peaks with a peak-height ratio r pro-
duce two maxima, when their resolution equals or exceeds Rs. It is
graphed in panel d of Fig. 1. The quantitative connection between
panels b and c is that the area under f(r) between 0 and r equals
the area under w(Rs) between Rs, as determined by Eq. (1) and r,
and infinity. This is true, because whatever number of peak pairs
in a separation has peak-height ratios less than r, the same num-
ber requires a resolution equaling or exceeding Rs for separation.
For example, Eq. (1) predicts that r = 0.2 when Rs = 0.770 (i.e., two
peaks with a 1:5 ratio of heights require a resolution equaling or
exceeding 0.770 to produce two maxima), such that the shaded
areas between the r values of 0 and 0.2 in panel b, and between the
Rs values of 0.770 and infinity in panel c, are equal. By the same
argument, the unshaded (white) areas in panels b and c are equal.
These are the areas under f(r) between r and 1, and under the res-
olution distribution between 0.5 (the smallest possible minimum
resolution, appropriate to two peaks of equal height) and Rs.

Therefore, one can calculate the resolution distribution by cal-
culating the area under the ratio distribution f(r). The shaded area
under f(r) is given by the cumulative distribution function F(r) [10]

F(r) =
∫ r

0

f (z) dz (2a)

where z is a dummy  variable. The unshaded area under f(r) is given
by the survival function Fc(r) (or complementary cumulative dis-
tribution function) [10]

Fc(r) = 1 − F(r) =
∫ 1

r

f (z) dz (2b)

Graphs of F(r) and Fc(r) are shown in panel e of Fig. 1, with F(r) = 0
and Fc(r) = 1 at r = 0, and F(r) = 1 and Fc(r) = 0 at r = 1.

2.2. General equations for resolution distribution

From previous arguments, Fc(r) must equal the area under the
resolution distribution w(Rs) between 0.5 and the value of Rs paired
with r via Eq. (1).  Thus

Fc(r) =
∫ Rs

0.5

w(z) dz (3)

where z is again a dummy  variable. Eq. (3) is an integral equation
with a kernel of unity. On its differentiation with respect to Rs, one
obtains

w(Rs) = dFc(r)
dRs

(4)

Although Fc(r) in Eq. (4) does not depend explicitly on Rs, it has
an implicit dependence expressed by Eq. (1),  in which Rs varies with
r. This dependence is taken into account by applying the chain rule
to Eq. (4)

w(Rs) = dFc(r)
dr

dr

dRs
(5a)

where

dr

dRs
= −8
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as derived from Eq. (1) by Felinger [8].
Eq. (5a) shows the resolution distribution w(Rs) is the product of

two derivatives. One of them, dFc(r)/dr, varies with the peak-height
distribution. The other, dr/dRs, is always the same. The validity of
Eq. (5a) is suggested by its prediction of two resolution distribu-
tions derived by Felinger. For a uniform distribution of peak heights,
Fc(r) = 1 − r, as shown in Section 2.2 of the Supplementary material.
Thus, dFc(r)/dr = −1, and Eq. (5a) reduces to w(Rs) = −dr/dRs, which
is the negative of Eq. (5b) and equal to Felinger’s result [8].  For
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