Accepted Manuscript

First principles study of the structural, Electronic, Magnetic and thermoelectric properties of Zr₂RhAl

Marah J. Alrahamneh, Ahmad A. Mousa, Jamil M. Khalifeh

PII: S0921-4526(18)30642-2

DOI: 10.1016/j.physb.2018.10.018

Reference: PHYSB 311103

To appear in: Physica B: Physics of Condensed Matter

Received Date: 27 September 2018

Revised Date: 9 October 2018
Accepted Date: 10 October 2018

Please cite this article as: M.J. Alrahamneh, A.A. Mousa, J.M. Khalifeh, First principles study of the structural, Electronic, Magnetic and thermoelectric properties of Zr₂RhAl, *Physica B: Physics of Condensed Matter* (2018), doi: https://doi.org/10.1016/j.physb.2018.10.018.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

First Principles Study of the Structural, Electronic, Magnetic and Thermoelectric Properties of $\mathrm{Zr_2RhAl}$

Marah J. Alrahamneh^a, Ahmad A. Mousa^{b,*}, Jamil M. Khalifeh^a

^a Department of Physics, The University of Jordan, Amman 11942, Jordan
^b Middle East University, Amman 11831, Jordan

Abstract

The inverse Heusler alloy Zr₂RhAl is investigated using first-principles calculations. The calculations are carried out using the full-potential linearized augmented plane wave plus local orbital (FP-LAPW+lo) method that is employed in the WIEN2k package. The structural, electronic, magnetic, and thermoelectric properties are studied. It is found that the ferromagnetic phase of Zr₂RhAl is the most stable with lattice parameter 6.6328 Å. The calculations showed that there is an energy gap in the spin down channel whereas the spin up channel is metallic, resulting in a 100 % spin polarization at Fermi level. This is an obvious characteristic of half-metallic materials. The calculated total magnetic moment of Zr₂RhAl is found to be 2 μ_B which follows the generalized Slater-Pauling rule. The Curie temperature is estimated to be 607 K using the mean field approximation. Transport properties are studied using the Boltzmann theory with constant relaxation time approximation. The variation of transport properties with temperature is investigated using the two current model.

Keywords: Heusler alloys; Electronic properties; Magnetic properties; Thermoelectric properties

Email address: amousa@meu.edu.jo (Ahmad A. Mousa)

^{*}Corresponding author

Download English Version:

https://daneshyari.com/en/article/12015905

Download Persian Version:

 $\underline{https://daneshyari.com/article/12015905}$

Daneshyari.com