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a  b  s  t  r  a  c  t

The  expressions  accounting  for  the  peak  variance  in isocratic  and  gradient  liquid  chromatography  is
derived  from  the transport  model.  In mathematical  treatments,  the  dwelling  time  is taken  into  account,
and  the  type  of  solvent  strength,  gradient  profile  and  the  variation  of plate  height  (H)  with  mobile  phase
composition  (ϕ) is  not  specified.  By applying  a coordinate  transformation,  the  transport  model  is solved
by using  the  Laplace  transform  approach.  A plate  height  equation  that  is  suited  for  both  isocratic  and
gradient  elution  is  obtained.  Based  on  this  equation,  the  plate  height  equations  for  any  combination  of
stepwise  and  linear  gradients  are  derived.  These  equations  will  be algebraic  when  the  solvent  strength
is  linear  and  the H–ϕ  plot is parabolic.  The  plate height  equations  for  single  stepwise,  single  linear  and
the  ladder-like  gradients  are  also given.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Gradient liquid chromatography (GLC) can considerably enhance the separation and peak detection capabilities [1–4]. In practice it
is usually implemented by changing mobile phase composition (ϕ) with time (t). The partition coefficient (K), which accounts for the
distribution of the solute between mobile and stationary phase, is connected with ϕ. In many reversed phase systems, the relationship
between the retention factor (k = FTK, FT denoting phase ratio) and ϕ can be accounted for by the linear solvent strength (LSS) model [5–8],

ln k = ln k0 − Sϕ (1)

where k0 is the retention factor of the solute in 100% of the starting (weak) solvent, and S is the solvent strength parameter. Non-LSS (i.e.
curving plots of lnk  vs ϕ) has also been found in many cases especially in ion exchange chromatography [9–11]. In gradient elution, the
variation of ϕ with t will make k (or K) a function of t. This makes the situations in gradient elution much more complicated than those in
isocratic elution.

Mathematical models developed by using the mass balance approach are available to account for the band profiles obtained in chro-
matography. These models consist of a set of partial differential equations (PDEs), describing the mass balance of the solute in a slice of
column and its kinetics of mass transfer in the column [12]. The expressions for retention time and plate height can be derived from these
models. For isocratic elution, van Deemter has proposed a famous plate height equation (see Eq. (38) in Ref. [13]),
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which is derived from the analytical solution of the solid film linear driving force (SFLD) model [14],
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∂q

∂t
= kf (q∗ − q) = kf (KC − q) (4)

In the above equations, H is the height equivalent to a theoretical plate (HETP), u is the linear flow velocity, C and q are the concentration
of the solute in mobile and stationary phase, respectively, q* is the stationary phase concentration in equilibrium (i.e. q* = KC), Z is the axial
distance starting from the column inlet, D is the axial dispersion coefficient, and kf is the rate coefficient accounting for the contributions
of the fluid-to-particle mass transfer, the intraparticle diffusion, and the sorption kinetics to band broadening [15].

The SFLD model can be further reduced to the equilibrium dispersive (ED) and the transport model [15–18]. The ED model assumes
that the equilibrium of the solute between stationary and mobile phase is infinitely fast. In this model, all the mass transfer resistances are
lumped into an apparent axial dispersion coefficient Da,
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The plate height equation obtained from the ED model is [15,19],

H = 2Da

u
(7)

which is the same as the first term on the right hand side (RHS) of Eq. (2) except that D is replaced by Da.
By contrast, the transport model neglects axial dispersion, and all the mass transfer resistances are lumped into a lumped mass transfer

coefficient kfL [15,17],
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The plate height equation obtained from the transport model is
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which is the same as the second term on the RHS of Eq. (2) except that kf is replaced by kfL. Generally, Eq. (10) can be taken equivalent to Eq.
(7). Miyabe and Guiochon have utilized this equivalence to calculate the value of kfL from that of Da which is derived from the breakthrough
curve [15].

For gradient elution, the studies on the peak variance are usually based on the work of Poppe [20]. That work uses the ED model and
makes the following assumptions:

(1) The gradient profile is not distorted by dispersion or by uptake of solvent components by the stationary phase.
(2) The column efficiency is independent of the mobile phase composition.
(3) The retention factor of the solute inside its band varies linearly with the distance from the band center.
(4) The LSS model applies to the retention of the solute studied (recently Gritti and Guiochon has pointed out that this assumption is

necessary for the hold of the above assumption (3) [21,22]).
(5) The dwelling time, which accounts for the mobile phase migrating from the mixer to the beginning of the column, is neglected (note

that Eqs. (14) and (26) in Ref. [20] are actually derived by ignoring the dwelling time [23,24]).

It should also be noted that the above assumptions are not always true in practice. For example, the plate height will vary with mobile
phase composition and thus the assumption (2) has its limitation. Poppe et al. have also realized it. They did not include this effect in their
treatment, because they thought that it would lead to unacceptable mathematical complexity [20]. Also, there is no general agreement
between theoretical predictions and the experimental values of peak compression. Better models are still needed [22,25]. By using the
Non-LSS model accounting for the retention and taking into account the adsorption of mobile phase component such as acetonitrile onto
the stationary phase, Gritti and Guiochon have extended the Poppe’s approach to the prediction of the peak compression factor in linear
gradient elution [22,26].

So far, there are few studies on the application of the transport model in GLC. From Eqs. (2), (7) and (10), it can be believed that the
studies on the features of the transport model in GLC may  also provide some significant physical insight into the process of gradient elution.
In this paper, we discuss in detail the mathematical treatments for the transport model in GLC. The expressions obtained in this work will
be used in a following paper to account for the experimental data obtained in gradient elution. In the mathematical treatments, we take
the dwelling time into account, and do not specify the type of solvent strength, gradient profile and the variation of H with ϕ. Therefore,
the expressions obtained in this work may  have a wide scope of application. It is also interesting to find out that there are some simple
results obtained from the transport model. For example, the expressions obtained for any combination of stepwise and linear gradients
are algebraic when the solvent strength is linear and the H–ϕ plot is parabolic.

2. Theoretical models

2.1. Assumptions for the modeling

In this work we make the following assumptions:
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