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a  b  s  t  r  a  c  t

Three  retention  models  for liquid  chromatography  are  developed  using  principal  component  analysis
(PCA).  It  is  shown  that  they  exhibit  features  similar  to that  of  the  model  based  on  linear  solvation  energy
relationship  (LSER).  However,  the  fitting  performance  of the  PCA  models  is  better  than  that  of the  LSER
model,  the  performance  of  which  can  be considerably  improved  by  the  use  of  artificial  neural  networks.
In  addition,  the  possibility  of  using  the  proposed  models  as  well  as  the  LSER  model  to  predict  the  retention
times  of  solutes  under  chromatographic  conditions  at which  these  solutes  have never been  studied  is  also
examined  by  means  of  three  data  sets  of  analytes  consisting  of  non-polar  compounds  to  polar  compounds
with  a variety  of functional  groups.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The free energy of transfer of a solute between the stationary and
the mobile phases in the liquid chromatography can be described
as the linear sum of contributing processes. This results in the linear
solvation energy relationship (LSER) expression of the logarithmic
capacity factor, which using recent Abraham’s notation is given by
[1–5]

ln k = c + eE + sS + ˛A + bB + �V (1)

where the letters E, S, A, B, V are analyte parameters (descriptors)
representing its polarizability, dipolarity, hydrogen bond donat-
ing ability, hydrogen bond accepting ability, and molecular size,
respectively. Descriptors for more than 4000 compounds are avail-
able [6] plus a software program to estimate analyte descriptors
from structure [7].

The coefficients e, s, a, b, v and the constant c reflect properties of
the mobile phase and the stationary phase of the chromatographic
column and they are determined by multi-parameter linear least
squares fit to experimental data. Note that in literature and espe-
cially in exo-thermodynamic studies log k is used instead of ln k.
However, in this article for reasons of coherence we  use the natural
logarithm of k for all expressions of the retention models.
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When the column/mobile phase system changes, the column
parameters e, s, a, b, v, and c change as well. Thus, in the same
column but at different mobile phase compositions the above coef-
ficients become functions of ϕ, the volume fraction of the organic
modifier in the mobile phase. Wang et al. proposed a linear depen-
dence of these parameters upon ϕ [8],  while for wider ranges of
solvent compositions Torres-Lapasió et al. proposed, among others,
the quadratic dependence [9].  Thus we  may  in general write

ln k = (c0 + c1ϕ + · · · + crϕr) + (e0 + e1ϕ + · · · + erϕr)E

+ (s0 + s1ϕ + · · · + srϕr)S + (˛0 + ˛1ϕ + · · · + ˛rϕr)A

+ (b0 + b1ϕ + · · · + brϕr)B + (�0 + �1ϕ + · · · + �rϕr)V (2)

The above relationship with r = 1 or r = 2 has been used for the
prediction of the elution time under isocratic conditions and its
performance in comparison to other models has been recently eval-
uated [10]. Similar expressions have been proposed for gradient
elution [11–13].

Eq. (1) resembles those obtained from either the principal com-
ponent analysis (PCA) or the factor analysis (FA). For example, if we
consider a matrix of centered observations Xij (i = 1, 2,.  . .,  n; j = 1,
2,.  . .,  m), then each observation is a linear combination of factor
scores Fik plus noise [14–16]

Xij =
q∑

k=1

wkjFik + εij (3)
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Here, the weights wkj are called the factor loadings of the observ-
able features, εij is the noise term, and q ≤ m is the number of factor
scores (and factor loadings) used to express each observation. PCA
is usually adopted to extract and visualize patterns in large data
matrices since by PCA the number of variables in a data set can
be reduced by finding linear combinations of variables explaining
most of the variability. Thus, the PCA method has been used for the
classification of large sets of solutes based on HPLC retention data,
usually in a QSRR (quantitative structure–retention relationships)
context [17–24].  Alternatively, PCA has been combined with target
transformation factor analysis to derive retention models [25–28].

In the present paper we also examine the possibility of using
PCA to develop models, like the one of Eq. (2),  based on the general
expression of Eq. (3).  Moreover, taking into account that in Eq. (3),
as in Eq. (1),  wkj are functions of the of the mobile and the stationary
phase of the chromatographic column and Fik depend exclusively
on the solute properties, we examine whether the PCA retention
models can be used to predict the retention time of solutes under
conditions that they have never been previously studied.

2. Theory

2.1. General relationships

The theory of PCA is described in many textbooks [14–16].  The
basic relationships that we are going to use in developing reten-
tion models are the following. Consider an original X matrix with
Xij (i = 1, 2,. . .,  n; j = 1, 2,. . .,  m) elements. The basis of PCA is the
singular value decomposition of X. However, in most statistical
packages, the input of a conventional PCA is the normalized matrix
Z calculated from

zij = Xij − Xj

�j
, i = 1, 2, . . . , n; j = 1, 2, . . . , m (4)

where X̄j is the mean value of the jth column of X and �j is the cor-
responding standard deviation. The output of PCA is among others
the n × q score matrix S and the m × q loadings matrix V, which are
related to the Z matrix through the following relationship

Z = SVT + E (5)

where E is the residual or noise matrix. From Eq. (5) we readily
obtain that the elements zij of Z are given by

zij = v1jPi1 + v2jPi2 + · · · + vkjPiq + eij (6)

The most interesting property of this expression is that we can
directly calculate the loadings matrix V from matrices Z and S, or
the score matrix S from matrices Z and V by applying in both cases
multivariate linear regression. In terms of matrix algebra, this can
be done by means of the following two equations

VT = (ST S)
−1

ST Z and S = ZV(VT V)
−1

(7)

If we take into account the definition of zij and the noise term in
Eq. (6) is removed, we obtain

Xij

�j
≈ X̄j

�j
+ v1jPi1 + v2jPi2 + · · · + vkjPiq. (8)

2.2. First model

Consider that matrix X consists of n rows and m columns that
contain ln k(ϕ1, ϕ2,. . .,  pH) values. In particular, each row corre-
sponds to the ln k value of a certain solute and each column to
certain experimental conditions, (ϕ1, ϕ2,. . .,  pH), used for the deter-
mination of ln k. If matrix X is normalized according to Eq. (4) and

this normalization matrix is used as an input of a conventional PCA
without rotation, then we  obtain the retention model

ln kij(calc) = ln kj + �jv1jPi1 + �jv2jPi2 + · · · + �jvqjPiq (9)

Here, ln kij(calc) is the predicted value of ln k that corresponds
to the ith solute measured under experimental conditions of the
jth column and ln kj is the mean value of the ln k values of the jth
column. In this expression the score factors Piq depend exclusively
on solute i. In contrast, the quantities �jvqj as well as the average
value ln kj depend on the experimental conditions ϕ1, ϕ2,. . .,  pH. In
the simple case that ln k depends only on the single factor ϕ, �jvqj

and ln kj may  be approximated by polynomials and therefore the
retention model may  be expressed as

ln k = (c00 + c01ϕ + · · ·c0rϕr) + (c10 + c11ϕ + · · ·c1rϕr)P1

+ (c20 + c21ϕ + · · ·c2rϕr)P2 + · · · + (cq0 + cq1ϕ + · · ·cqrϕr)Pq

(10)

where for simplicity we  have omitted subscript i. However, at this
point we should stress that the approximation of �jvqj and ln kj by
polynomials may  not be always the best choice. Alternative solu-
tions, like the use of rational expressions [29–32],  may  be tested.

It is seen that the expression of Eq. (10) is at least formally
equivalent to Eq. (2) provided q = 5. However, Eq. (10) is much
more flexible than Eq. (2).  There is no need to know the factors
P1, P2,. . .,  Pq in advance in order to apply Eq. (10) and their num-
ber should not be constant. We  may  test several numbers of factors
having as a criterion the balance between simplicity and accuracy
of prediction.

2.3. Second model

Consider that matrix X consists of the elements xij = ı ln kij

(i = 1, 2,. . .,  n; j = 1, 2,. . .,  m) defined from

xij = ı ln kij = ln ki(ϕ1, ϕ2, . . . , pH) − ln ki(ϕ1 = a1,

ϕ2 = a2, . . . , pH = ag) (11)

where ln ki(ϕ1 = a1, ϕ2 = a2,. . .,  pH = ag) is a reference value of ln k
and, in particular, the ln k value of the ith solute measured when
ϕ1 = a1, ϕ2 = a2,. . .,  and pH = ag. If we  use as an input of PCA the
centered matrix Xc with elements xij − x̄j , then Eq. (8) is still valid
but with �j = 1. That is,

xij = x̄j + v1jPi1 + v2jPi2 + · · · + vkjPiq (12)

Moreover, since for a certain solute i the quantity xij takes posi-
tive and negative values, there will be a set of Pip values, which will
be denoted by P0p, such that Eq. (12) yields

0 = x̄j + v1jP01 + v2jP02 + · · · + vqjP0q (13)

Below we  show that such a set of P0q values always exists. From
Eqs. (12) and (13) we  obtain

xij = v1jP
∗
i1 + v2jP

∗
i2 + · · · + vqjP

∗
iq (14)

where P∗
iq

= Piq − P0q. If we compare this equation to Eq. (6),  we
readily conclude that P∗

iq
can be directly computed by PCA provided

that the input matrix Z has been replaced by the matrix X with
elements xij = ı ln kij. That is

S∗ = XV(VT V)
−1

(15)

where the elements of matrix S* are the values of P∗
iq

. This proves
also that the set of P0q exists under all circumstances.
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