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a  b  s  t  r  a  c  t

In  supercritical  fluid  chromatography  (SFC),  the  significant  expansion  of the  mobile  phase  along  the col-
umn  causes  the  formation  of  axial  and  radial  gradients  of  temperature.  Due  to these  gradients,  the  mobile
phase  density,  its viscosity,  its  velocity,  its diffusion  coefficients,  etc.  are  not  constant  throughout  the  col-
umn.  This  results  in a nonuniform  flow  velocity  distribution,  itself  causing  a loss  of column  efficiency  in
certain  cases,  even  at  low  flow  rates,  as  they do in HPLC.  At high  flow  rates,  an  important  deformation
of  the  elution  profiles  of the  sample  components  may  occur.  The  model  previously  used  to  account  sat-
isfactorily  for  the  retention  of an  unsorbed  solute  in  SFC  is applied  to the  modeling  of  the  elution  peak
profiles  of  retained  compounds.  The  numerical  solution  of the  combined  heat  and  mass  balance  equa-
tions  provides  the temperature  and  the  pressure  profiles  inside  the  column  and  values  of  the  retention
time  and the  band  profiles  of  retained  compounds  that  are  in excellent  agreement  with  independent
experimental  data  for large  value  of  mobile  phase  reduced  density.  At  low  reduced  densities,  the  band
profiles  can  strongly  depend  on the  column  axial  distribution  of  porosity.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Supercritical fluid chromatography (SFC) is considered as a
“green” alternative to classical liquid chromatography due to its use
of a mobile phase based on high-density CO2. Even though organic
solvents must often be added to CO2 as modifiers, their required
concentrations are lower than in HPLC. Other advantages of SFC
are the possibility of an easy adjustment of the solvent properties
by changing the operating pressure and the temperature. The effi-
ciency of a column in SFC, compared to that of a similar system used
in classical HPLC, is generally higher, due to lower mass transfer
resistances. For these reasons SFC often permits the achievement
of faster and more efficient separations than HPLC.

The desire to decrease the separation times of mixtures leads
to increases in the mobile phase flow rate. This means that the
columns must be run with a high pressure gradient. A large pressure
drop along a column is not desirable because the temperature of the
mobile phase decreases when it expands. Then, the mobile phase
tends to absorb heat from the air outside the column. As a result,
axial and radial temperature gradients form inside the column.
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These temperature gradients cause corresponding axial and radial
gradients of all the physico-chemical parameters. The phenomena
observed in the SFC column are similar to those encountered in ultra
high pressure liquid chromatography (UHPLC). For large back pres-
sures (e.g., 500 bar and more in UHPLC and several dozen bars in
SFC) the deformations of the peak shapes are similar – compare the
experimental peak profiles in [1,2]. The difference is that in UHPLC
the heat is generated inside the column due to viscous friction
whereas in SFC the heat is absorbed from the column surroundings.
As a result, the gradients of physico-chemical parameters are in the
opposite direction in both versions of chromatography [3,4]. The
other important difference is that the axial and the radial mobile
phase density gradients are much greater in the case of SFC. Because
the density has a crucial impact on the adsorption isotherm in SFC,
the density gradients can have a significant impact on retention and
efficiency.

Most SFC separations are performed using outlet pressures
around 150 bar. The peak deformations noted above, however,
are generally important only when columns are operated at tem-
peratures and pressures slightly above the critical conditions, at
outlet pressures below about 130 bar, temperatures up to about
100 ◦C, and reduced densities close to 1.0. These conditions tend
to be accompanied by excess efficiency losses and are typically
avoided in general practice [5].  This is unfortunate because the
mass transport properties of carbon dioxide under these conditions
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favor faster, more efficient separations. Attempts to model chro-
matographic behavior under these conditions have thus far been
unsuccessful [6,7]. A model that is valid over the entire range of
potentially useful conditions in SFC could be beneficial by provid-
ing a basis for exploiting these conditions. The work presented in
this paper addresses this serious deficiency by presenting an accu-
rate model that satisfactorily describes chromatographic behavior
under these severe conditions.

Due to the similarity of the physical phenomena taking place
in SFC, the method developed for modeling the UHPLC peak pro-
files can be used also for modeling those in SFC. We  previously
developed and validated a model combining the heat and the mass
balance equations of UHPLC columns, an isotherm model for the
solute, and the equation accounting for flow in porous media [8,9].
This model accurately predicts analyte retention factors, their elu-
tion band profiles, and the dependence of the column efficiency
on the mobile phase velocity. On the basis of this model described
in the first part of our earlier paper [4],  a general SFC model cou-
pling the heat and the mass balance equations with an appropriate
equation of state was proposed. The numerical solution of the gen-
eralized ED model coupled with the calculated temperature and
pressure distributions enabled excellent forecasts of the retention
times and efficiency for the elution of an unsorbed solute [4].

The goal of this work was to adapt and validate this model for
retained solutes. We  restricted our investigation to analytical scale
of SFC. A new version of this model which enables analyses of the
impact of the axial porosities distributions on the temperature,
the flow rate and the concentration band profiles is proposed. To
validate this model, we first compared the temperature recorded
along the column wall and the pressure drop along the column with
those calculated with our model. The agreement is excellent. After-
wards we compare the simulated peaks profiles for several retained
and unretained solutes, for average carbon dioxide reduced density
(RD) equal to 1.5 and 1.0. In the first case a good agreement between
the experimental results and the calculated ones was obtained. In
the second case the agreement is good at very low and very high
flow rates. However, at medium mobile phase flow rates, some
discrepancies between theory and experiments are observed.

2. Mathematical models

The mathematical model of SFC applied in this paper is very
similar to that used in the first part of our earlier work [4].  The
SFC model combines three separate models: (1) a model of heat
transfer; (2) a model of mass transfer; and (3) a model of mobile
phase velocity distribution. The heat transfer model is exactly the
same as in previous paper [4] and will not being discussed here.
The second model accounts for the propagation of a solute band
along a column in which there are gradients of temperature, vis-
cosity, velocity, density. It also includes other parameters, ignored
previously, which can change along the column or in the radial
direction, namely the packing heterogeneity. We  apply our mass
balance model on columns in which there is a gradient of packing
density or in other words a gradient of external porosity. The exis-
tence of axial packing density gradients was mentioned by Wong
et al. [10]. These authors found that the external porosity decreases
along the column. The existence of a radial packing heterogeneity
follows from experiments that point out a radial distribution of the
flow rate obtained at low mobile phase velocity [11], that is for flow
rates for which viscous friction heat effects could be neglected.

The mass transfer model was coupled with an isotherm model,
the equilibrium constants of which depend on the local tempera-
ture and the mobile phase density.

The assumption of a bed heterogeneity forces modifications
of the third model previously used, which accounts for the

distribution of the mobile phase velocity. In this work, we assumed
that the flow rate depends on the local temperature, the pressure,
the viscosity and the density of the mobile phase as well as on the
bed porosity.

2.1. The mass balance equation

In writing the mass balance for an analyte, we assumed that
the contributions to band broadening due to the finite mass trans-
fer resistances and to the axial dispersion can be lumped into an
apparent dispersion coefficient. We  assumed that this coefficient
can be evaluated using formulae developed in [9,12] and used in
[4], in spite of the fact that the porosity is a function of the posi-
tion inside the column. It should be also remembered that axial
dispersion, radial dispersion and the velocity are functions of the
position inside the column. Under this assumption, the mass bal-
ance equation is an extension of the equilibrium-dispersive (ED)
model [4,13].

The mass balance equation of the generalized ED model is writ-
ten as follows:
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where the axial and the radial components of the mass flux are
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The CA and qA are the analyte concentrations in the mobile and sta-
tionary phases at equilibrium (g/L), respectively, t is the time, z is
the axial coordinate, u is the axial superficial mobile phase velocity,
Dz,a and Dr,a are the local axial and radial apparent dispersion coef-
ficients (m2/s), respectively, F = (1 − εt)/εt is the phase ratio and εt is
the total porosity of the column, which can be a function of the axial
and the radial positions. In the model, the convective mass transfer
in the radial direction was  neglected – the numerical experiments
proved that it has no influence on the concentration band profiles.

The dispersion terms in Eqs. (2) and (3) follow from Fick’s first
law, namely the diffusion flux in Fick’s law as depicted by the
expression:

J = −Dm∇CA (4)

It would be more theoretically justified to express the diffusion
flux by the mass fraction [14]:
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(
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�

)
(5)

where Dm is the molecular diffusion coefficient and � is the fluid
density. However, the differences between the peak profiles cal-
culated with the first and the second equations were marginal in
our case, so in the following, we  refer the dispersion terms to the
concentration CA.

The apparent axial dispersion coefficient was calculated from
the following equation [4]:
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and DL is the axial dispersion coefficient, dp is adsorbent diame-
ter, Deff is effective particle diffusivity, εe is the external porosity,
which can depend on the position inside column, εp is the particle
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