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a  b  s  t  r  a  c  t

A  mathematical  procedure  using  the Matlab® PDE  toolbox  to calculate  the numerical  constant  appearing
in  the  general  Taylor–Aris  expression  for  the  dispersion  in a laminar  flow  through  open-tubular  conduits
with  a variety  of  quasi-rectangular  cross-sectional  shapes  is described.  The  procedure  has  been  applied  to
assess  the effect  of  some  of  the  most  frequently  occurring  etching  imperfections  (linear  or  curved  tapering
of the  inter-pillar  distance  along  the  depth  coordinate,  occurrence  of  local  notches)  in  etched  pillar  array
columns.  In addition,  covering  a  broad  range  of possible  geometries,  a  number  of new  shapes  and  optimal
geometries  to minimize  the  dispersion  in open-tubular  microchannels  and  pillar  array  columns  have been
proposed.  Making  a full  shape-sensitivity  study,  it was  also  found  that,  whereas  the  proposed  designs  can
theoretically  reduce  the  dispersion  up to a  factor  of 8, relatively  small  deviations  from  this  ideal  shape  can
however  again  dramatically  increase  the  dispersion.  Designers  should  therefore  be very  careful  before
implementing  an  optimized  shape  and  should  first aim  at solving  the  etching  imperfection  problems.

©  2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

During the last decade, so-called pillar array columns have
been evaluated as an alternative for the particle and monolithic
columns conventionally used to perform liquid chromatography
[1–11]. Because of the maximal degree of uniformity with which
micro-pillar arrays can be fabricated, they seem ideally suited
to conduct chromatographic separations, as this is a separation
method where any degree of band broadening caused by disor-
der and heterogeneity directly translates into a considerable loss
in performance. Stimulated by promising 2D computational fluid
dynamics (CFD) simulations [12–14], a series of extensive axial
dispersion (band broadening) measurement studies has been con-
ducted and reported upon in literature [1–3,10,11]. When the
measurements were performed in non-porous silicon pillar array
columns with a small depth, i.e., with a small depth over pillar
spacing (distance between pillars, e.g. pillar spacing = 1 in Fig. 1)
aspect ratio (aspect ratio = A in Fig. 1), the observed degree of
band broadening could be perfectly predicted by adding a so-
called top–bottom contribution to the 2D dispersion predicted
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by the CFD simulations [6,14–16]. This top–bottom contribution
is needed to correct for the flow-arresting effect of the top and
bottom wall. Compared to the theoretical 2D array case consid-
ered in most simulations, the top and bottom walls are needed
in reality to close-off the pillar array. The presence of these walls
leads to a local deviation of the flow field from that in the cen-
tral part of the flow, in turn leading to an additional source of
dispersion, very similar to the unexpectedly large contribution of
the short side-walls to the dispersion in laminar flows through
conduits with a flat-rectangular cross-section [17–21]. In a 2D cal-
culation, such top and bottom walls are not present because the
flow field is assumed to be uniform in the direction of the pil-
lar’s central axis. In [22], it was shown that the presence can be
represented by an extra C-term contribution (=extra plate height
term varying linearly with the velocity) whose magnitude can be
fully predicted using the side-wall effect theory for flat-rectangular
channels.

A significant deviation (factor 1.25 increase) from this theoreti-
cal expectation was however measured when testing deeper pillar
arrays, i.e., with a larger pillar aspect ratio [10,11]. In these cases,
SEM pictures of the employed channels revealed a small vertical
taper of the distance between the pillars, typically decreasing from
the top to the bottom of the array, and typically on the order of some
5–10% (some 50 nm in absolute values). This taper is in practice
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List of symbols

Dmol molar diffusion coefficient [m2/s]
Dax axial molar diffusion coefficient [m2/s]
�Aris geometry dependent numerical constant [–]
t time [s]
x, y, z coordinates [m]
C concentration [mol/m3]
u speed [m/s]
uav average speed [m/s]
P pressure [Pa]
� dynamic viscosity [Pa s]
d hydraulic diameter [m]
L length [m]
� boundary
S surface [m2]
� dispersion potential [–]
� concentration potential [–]
h dimensionless plate height [–]
v dimensionless speed/Peclet number [–]
A height over width aspect ratio [–]
W, H, T, P, B, N geometrical parameters (see Fig. 1) [–]
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Fig. 1. Considered geometries: (a) rectangular-duct, (b) tapered-duct, (c) pinched-
duct, (d) T-duct, (e) I-duct.

difficult to avoid and is caused by minor unbalances between etch-
ing and passivation during the Bosch etching process. This taper
can be expected to inevitably lead to an additional velocity gradient
extending over the depth of the channel.

In a recent paper [23], where smaller dimensions could be
achieved with advanced deep UV lithography, the employed
1.25 �m spacing (32 �m depth) resulted in a plate height of 2.0 �m,
which was roughly two times higher than what can be expected
based on work with a spacing twice as large [10,11]. This was
attributed to the occurrence of vertical differences in throughpore
width, in turn caused by the vertical taper that is inevitably present
on the diameter of the etched pillars. It was speculated that these
vertical differences in throughpore width give rise to vertical veloc-
ity gradients. Since the taper on the pillar diameter is absolute in
nature, its relative contribution becomes more and more important
if smaller inter-pillar distances are pursued, which would explain
why poorer performances are obtained with pillar array columns
with a smaller through-pore size. A similar effect was  observed in
[9], where it was concluded that any further efforts to reduce the
dimensions of pillar array columns are useless without first improv-
ing the tapering of the structures. Estimating the magnitude of this
effect is one of the aims for the present study.

Other etching imperfections that have been noticed from SEM
pictures of photolithographically etched micro-pillar arrays are the
occurrence of local notches at the very top and bottom of the pil-
lars, as well as the occurrence of a more lense-shaped taper profile,
reaching a maximal inter-pillar distance midway the depth of the
array. Examples are Fig. 4 in [24] and Fig. 2 in [1]. To find out
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Fig. 2. (a) �Aris-coefficient as function of the aspect ratio A of a tube with a rectangu-
lar cross-section. The dots indicate the values calculated in this work. The asterisks
show the values calculated by Poppe [21]. (b) Effect on the plate height, expressed
as  a reduced van Deemter plot Eq. (1.2).

whether this additional velocity could explain the observed addi-
tional band broadening, flow simulations are needed.

In the present paper, the potential effect of such etching
imperfections has been assessed by numerically calculating the
numerical constant (�Aris) appearing in the classic Taylor–Aris
expression for the dispersion in laminar flows through open-
tubular channels with a uniform cross-section for a wide variety
of channels with a quasi-rectangular shape (cf. Fig. 1 further on).
A fast numerical method, based on the calculation of �Aris (see Eq.
(1.1)) has been implemented in Matlab® that allows to calculate
a full scan of geometries in a matter of minutes (calculating �Aris
for a single quasi-rectangular consumes about 1 s of computational
time). Although the assumption of a constant cross-section does
not strictly hold for the flow-through pores in a pillar array column
(because of the continuously changing distance between the pil-
lars in the flow direction), it has been shown by 3D-computational
fluid dynamics calculations in [14] that the constant cross-section
assumption provides a very close approximation. Since pillar array
columns with non-rectangular channels still have a uniform depth,
it can be inferred that there still would be no vertical convective
component, such that no diffusive-convective coupling effects can
be expected, similar to the case studied in [14].

The problem of the axial dispersion in a rectangular channel is a
classic problem that has been studied and solved by, amongst oth-
ers, Taylor, Aris, Chatwin and Poppe [17,20,21,25–27]. They showed
that the axial dispersion is in the long time limit (i.e., the limit where
Dax is no longer a function of the time after the extinction of the
transversal concentration gradients) given by:

Dax

Dmol
= 1 + �Aris · v2 (1.1)

wherein v is the dimensionless velocity (=Peclet-number in engi-
neering literature) based on the characteristic size of the channel
(shortest side in present contribution). In the area of chromatog-
raphy, axial dispersion is most often described in terms of a
theoretical plate height, which, in its dimensionless form can
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