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a  b  s  t  r  a  c  t

The  chromatographic  elution  has  been  studied  from  different  perspectives.  However,  in  spite  of  the sim-
plicity and  evident  deficiencies  of  the plate  model  proposed  by  Martin  and  Synge,  it has  served  as  a  basis
for  the  characterization  of  columns  up-to-date.  This  approach  envisions  the  chromatographic  column
as an  arbitrary  number  of theoretical  plates,  each  of  them  consisting  of  identical  repeating  portions  of
mobile  phase  and  stationary  phase.  Solutes  partition  between  both  phases,  reaching  the  equilibrium.
Mobile  phase  transference  between  the  theoretical  plates  is  assumed  to be infinitesimally  stepwise  (or
continuous),  giving  rise  to  the  mixing  of  the  solutions  in  adjacent  plates.  This  yields  an  additional  peak
broadening,  which  is  added  to  the  dispersion  associated  to  the  equilibrium  conditions.  It  is  commonly
assumed  that when  the solute  concentration  is  sufficiently  small,  chromatographic  elution  is  carried  out
under  linear  conditions,  which  is the  case  in  almost  all analytical  applications.  When  the solute  con-
centration  increases  above  a value  where  the  stationary  phase  approximates  saturation  (i.e. becomes
overloaded),  non-linear  elution  is  obtained.  In  addition  to overloading,  another  source  of  non-linearity
can  be  a  slow  mass  transfer.  An  extended  Martin  and  Synge  model  is  here  proposed  to include  slow
mass-transfer  kinetics  (with  respect  to flow  rate)  between  the  mobile  phase  and  stationary  phase.  We
show  that  there  is  a linear  relationship  between  the  variance  and  the  ratio  of  the  kinetic  constants  for  the
mass transfer  in  the  flow  direction  (�)  and  the  mass  transfer  between  the  mobile  phase  and  stationary
phase  (�),  which  has  been  called  the  kinetic  ratio  (� = �/�).  The  proposed  model  was  validated  with  data
obtained  according  to  an  approach  that simulates  the  solute  migration  through  the  theoretical  plates.  An
experimental  approach  to  measure  the  deviation  from  the equilibrium  conditions  using  the experimental
peak  variances  and  retention  times  at several  flow  rates  is also  proposed.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Finding an accurate model to describe the chromatographic elu-
tion is practically an unsolvable problem, as has been commented
by Giddings and Eyring [1],  due to the complexity and the unknown
factors involved in the process, beginning with the nature of the
multi-site surface up to the particularities of the stationary phase
packing. In spite of this, a huge effort has been done to develop
models to understand the peak shape and the main factors that
affect it [2–7].

The models that describe the equilibrium conditions in liquid
chromatography can be classified as linear and non-linear [6,8].
In the linear models, the amount of solute associated to the sta-
tionary phase is assumed to be proportional to its concentration
in the mobile phase. This implies that the equilibrium between
the mobile phase and stationary phase is instantaneous. Also, the
sample components do not compete for the stationary phase, nor
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interact among them; their elution is, therefore, independent from
each other. This means that each peak in a mixture has indepen-
dent characteristics and is identical to that obtained upon elution
of an isolated standard.

Linear chromatography has been studied from three different
perspectives: (i) the plate models proposed by Martin and Synge
[9], and Craig [10], (ii) the differential rate model that describes
the mass balance and mass-transfer kinetics, proposed by Lapidus
and Amundson [11], and van Deemter et al. [12], and extensively
applied by other authors [13–17],  and (iii) the statistical models
developed by Giddings and Eyring [1],  and followed by Dondi et al.
[18,19].

The plate models envision the chromatographic column as an
arbitrary number of theoretical plates, each of them consisting of
identical repeating portions of stationary phase and mobile phase.
It is assumed that the solute partitions between both phases, reach-
ing the equilibrium. In the model proposed by Craig [10], there is
no mixing mechanism and the mobile phase is transferred down-
stream completely from one plate to the following, in a discrete
way  (stepwise). The final band broadening is produced exclusively
by the quantitativeness of the distribution equilibrium of the solute

0021-9673/$ – see front matter ©  2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.chroma.2011.05.086

dx.doi.org/10.1016/j.chroma.2011.05.086
http://www.sciencedirect.com/science/journal/00219673
http://www.elsevier.com/locate/chroma
mailto:Juan.Baeza@uv.es
dx.doi.org/10.1016/j.chroma.2011.05.086


J.J. Baeza-Baeza, M.C. García-Álvarez-Coque / J. Chromatogr. A 1218 (2011) 5166– 5174 5167

between the two phases along the column theoretical plates, which
gives rise to solute dispersion along the theoretical plates. The Craig
model gives rise to a distribution, which can be approximated to a
Gaussian profile with the following variance [4]:

�2 = tR(tR − t0)
N

(1)

where tR is the retention time (time at the peak maximum), t0 the
dead time (the time at which a non-retained solute elutes) and N
the number of theoretical plates (or efficiency). According to this
model, a non-retained solute (i.e. in the absence of interactions)
would elute with the dead volume, with a null peak width.

In the model proposed by Martin and Synge [9],  mobile phase
transference between plates is assumed to be infinitesimally step-
wise (or continuous), giving rise to the mixing of the solutions in
adjacent plates. This yields an additional peak broadening, which
is added to the dispersion associated to the equilibrium conditions.
The final peak profile is an Erlang distribution [20], which can also
be approximated to a Gaussian with a variance:

�2 = t2
R

N
(2)

In the absence of interactions between solute and stationary
phase (i.e. for a non-retained solute), this model predicts a minimal
peak broadening:

�2
0 = t2

0
N

(3)

In spite of the simplicity and evident deficiencies of the Martin
and Synge plate model, it has served as a basis for the characteriza-
tion of columns up-to-date. These deficiencies have been partially
overcome by newer models [4,7,17]. We  make a new proposal,
which is explained below.

It is commonly assumed that when the solute concentration
is sufficiently small, chromatographic elution is carried out under
linear conditions, which is the case in almost all analytical applica-
tions. When the solute concentration increases above a value where
the stationary phase approximates saturation (i.e. becomes over-
loaded), non-linear elution conditions are obtained. This means
that the concentration in the stationary phase increases slower
than in the mobile phase. Accordingly, solutes at different con-
centrations tend to move along the column at different velocities:
the peaks become asymmetrical and the retention times depend
on the solute concentration in the mobile phase. This behaviour is
described by non-linear isotherms that follow different models, as
the Langmuir or Freundlich-type isotherms [8].

In addition to overloading, another source of non-linearity can
be a slow mass transfer. In this case, the changes in the solute con-
centration in the stationary phase will depend, not only on the
solute concentration in the mobile phase, but also on the station-
ary phase. In this work, the Martin and Synge model is extended to
include slow mass-transfer kinetics between the mobile phase and
stationary phase.

2. Theory

The plate count theory assumes that the chromatographic col-
umn  is divided in N theoretical plates. According to this, we  have
developed a global approach that considers the partition process
along the whole column. A system of N differential equations (one
equation for each theoretical plate) is obtained, which is solved
using the Laplace transform. The approach is applied below to equi-
librium and slow mass-transfer conditions in chromatography.

Fig. 1. Change in the moles of solute in the mobile phase associated to a theoretical
plate. A and B indicate the solute in the mobile phase and stationary phase, respec-
tively; dni−1,i and dni,i+1 denote the moles that enter and leave the i theoretical plate
in  dt.

2.1. Linear equilibrium elution

2.1.1. Peak function
Fig. 1 depicts the mass transfer for a given solute associated to an

i theoretical plate, in an infinitesimal time interval dt.  The change
in the moles of solute in a theoretical plate will be:

dni = [A]i−1dVm − [A]idVm (4)

where [A]i and [A]i−1 are the solute concentrations in the mobile
phase associated to the i and i−1 theoretical plates, respectively,
and dVm is the mobile phase volume that is transferred from one
plate to the next in the time interval dt.  Assuming that the distri-
bution equilibrium between mobile phase and stationary phase is
reached instantaneously, the partition constant is expressed as:

K = [B]i

[A]i
= bi

ai

Vm

Vs
(5)

[B]i is the solute concentration in the stationary phase, and Vm and
Vs are the volumes of mobile phase and stationary phase associated
to a theoretical plate, respectively, which do not change along the
column; ai and bi are the moles of solute in the mobile phase and
stationary phase in the i theoretical plate, respectively. The total
moles in the i theoretical plate will be:

ni = ai + bi (6)

From Eq. (5):

ni = ai + Kai
Vs

Vm
= ai

(
1 + K

Vs

Vm

)
(7)

The moles of solute in the mobile phase can be thus expressed
as a fraction of the total moles:

ai = pni (8)

with

p = 1(
1 + K Vs

Vm

) = 1
1 + k

= t0

tR
(9)

k being the retention factor:

k = tR − t0

t0
(10)

Therefore, the solute concentration in the mobile phase associ-
ated to the i theoretical plate will be:

[A]i = pni

Vm
(11)

On the other hand, dVm and dt are related through:

dVm = udt = NVm

t0
dt (12)

where u is the flow rate and NVm represents the total column vol-
ume  accessible to the mobile phase. Going back to Eq. (4),  and taking
into account Eqs. (11) and (12):

dni = N

t0
pni−1dt − N

t0
pnidt (13)
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