Accepted Manuscript

Structure and optical properties of ZnO/Zn2SiO4 composite thin films containing Eu3+ ions

Suliman Eltayeb Elhadi, Chao Liu, Zhiyong Zhao, Kai Li, Xiujian Zhao

PII: S0040-6090(18)30664-3

DOI: doi:10.1016/j.tsf.2018.10.003

Reference: TSF 36920

To appear in: Thin Solid Films

Received date: 28 January 2018
Revised date: 20 September 2018
Accepted date: 1 October 2018

Please cite this article as: Suliman Eltayeb Elhadi, Chao Liu, Zhiyong Zhao, Kai Li, Xiujian Zhao, Structure and optical properties of ZnO/Zn2SiO4 composite thin films containing Eu3+ ions. Tsf (2018), doi:10.1016/j.tsf.2018.10.003

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

optical properties of ZnO/Zn₂SiO₄ Structure and

composite thin films containing Eu³⁺ ions

Suliman Eltayeb Elhadia, b, Chao Liua, t, Zhiyong Zhaoa, Kai Lia, Xiujian Zhaoa

^aState Key Laboratory of silicate Materials for Architectures, Wuhan University of

Technology, 122 Luoshi Road, Hongshan, Wuhan, Hubei 430070, China.

^bDepartment of Physics, Shendi University, Shendi, River Nile State, P.O. Box

407, Sudan.

Corresponding author:

Prof. Dr. Chao Liu,

E-mail address: hite@whut.edu.cn

Tel: +86-15872362567

Fax: +86-027 87883743

Abstract

ZnO and ZnO/Zn₂SiO₄ thin films doped with 3% Eu³⁺ ions were prepared through

sol-gel dip-coating and subsequently thermal annealing in the range of 600-

900 °C. Effects of zinc and silica concentration on the structure and optical

properties of these thin film specimens were investigated

thermogravimetric differential scanning calorimetry, X-ray diffraction, scanning

electron microscopy, Fourier transform infrared spectroscopy and emission

spectroscopy. Transparent thin films containing ZnO nanocrystals and Zn₂SiO₄

nanocrystals were fabricated. It was found that Eu³⁺ ions were mainly resided in

the amorphous matrix or the surface of the nanocrystals, instead of being

incorporated into the nanocrystals. As a result, these composites showed intense

Download English Version:

https://daneshyari.com/en/article/12038656

Download Persian Version:

https://daneshyari.com/article/12038656

<u>Daneshyari.com</u>