Accepted Manuscript

Amorphisation effect in binary tellurides under low energy Ar⁺ ion bombardment

Attila Csík, Dmytro M. Zayachuk, Vasyl E. Slynko, Ute Schmidt, Csaba Buga, Kálman Vad

PII: S0167-577X(18)31623-9

DOI: https://doi.org/10.1016/j.matlet.2018.10.061

Reference: MLBLUE 25102

To appear in: Materials Letters

Received Date: 27 August 2018
Revised Date: 20 September 2018
Accepted Date: 9 October 2018

Please cite this article as: A. Csík, D.M. Zayachuk, V.E. Slynko, U. Schmidt, C. Buga, K. Vad, Amorphisation effect in binary tellurides under low energy Ar⁺ ion bombardment, *Materials Letters* (2018), doi: https://doi.org/10.1016/j.matlet.2018.10.061

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Amorphisation effect in binary tellurides under low energy \mathbf{Ar}^+ ion bombardment

Attila Csík^{1*}, Dmytro M. Zayachuk², Vasyl E. Slynko³, Ute Schmidt⁴, Csaba Buga¹ and Kálman Vad¹

¹Institute for Nuclear Research, Hungarian Academy of Sciences (ATOMKI), H-4026 Debrecen, Bem sqr. 18/c, Hungary

²Lviv Polytechnic National University, S. Bandera Str., 12, 79013 Lviv, Ukraine

³Institute for Problems of Material Science NASU, Vilde Str. 5, 58001 Chernivtsy, Ukraine

⁴ WITec GmbH, Lise-Meitner-Str. 6, D-89081 Ulm, Germany

*corresponding author: csik.attila@atomki.mta.hu

Abstract

Amorphisation effect on the surface of SnTe and GeTe samples under low Ar⁺ ion energy sputtering (160 eV) has been firstly observed. Scanning electron microscopy and Raman spectroscopy methods were used for the investigation. Microscope images show that ion bombardment changes significantly the morphology of SnTe and GeTe sample surfaces. Comparative Raman spectroscopy studies of the as-prepared and sputtered surfaces revealed that sputtering changes not only the surface morphology, but also the crystal structure of samples. Due to sputtering, the initial crystalline GeTe sample surface completely changed to amorphous, while the SnTe sample surface changed to a mixed amorphous-crystalline structure. This means that on the surface of *IVB* group binary tellurides an amorphisation can be evoked by low energy Ar⁺ ion bombardment, up to a few hundred electron volts energy.

Keywords: Raman spectroscopy; tellurides; amorphisation; low energy ion bombardment;

1. Introduction

Since the discovery that chalcogenides are good media for information storage application [1], a large number of researchers have focused on chalcogenide materials and their applications in data storage devices. Main advantages of chalcogenide materials in this field are the high cyclability, long-term stability, and fast changes between amorphous-crystallization structures [2]. Because of the wide applicability to these materials it is very

e-mail: csik.attila@atomki.mta.hu

1

^{*} Corresponding author: tel.: +36 52 509 212; fax: +36 52 416 181;

Download English Version:

https://daneshyari.com/en/article/12039519

Download Persian Version:

https://daneshyari.com/article/12039519

<u>Daneshyari.com</u>