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a b s t r a c t

A set of accurate expressions of elution-curve moments are derived from the moments of residence time
and displacement in a step based on probability theory. Then the problems about residence time and
displacement in a step of a solute molecule in the porous layer of capillary columns and in the moving
mobile phase are described by a set of mass-balance equations respectively. The set of equations are
solved in Fourier–Laplace domain, and the characteristic functions of residence time of a step, as well
as the moments, are obtained by means of computing software Mathematica. At last, using numerical
inverse Laplace transform, the elution curves for various conditions are calculated. In the case of large
desorption constant the results entirely coincide with those of mass-balance-equation theory and in the
case of small desorption constant they are equivalent to those of stochastic theory.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Because of the extreme complexity of chromatographic pro-
cesses, it is difficult to obtain an accurate elution curve by pure
theoretical calculation. Giddings and Eyring [1,2] gave an analytical
expression of elution curves for pure-rate-controlling adsorption
chromatography. However, in most cases, diffusions cannot be
ignored. Cavazzini, Felinger and Dondi et al. [3–6] used character-
istic function theory (CF theory) to obtain an expression containing
axial diffusions in mobile phases in frequency domain, then to give
the elution curves in time domain by numerical inversion. In the
model of Cavazzini et al., the diffusions in stationary phases and
the lateral diffusions in mobile phases are not considered. This is
correct for slow-desorption processes, because in these processes
diffusions do not play a major role. In most cases, elution curves can
be approached by Cram–Charlier series [7] or Edgeworth–Cramer
series [8,9], or simply by Gaussian distribution. In this way calculat-
ing an elution curve is reduced to calculating its retention time and
moments. However, there have not been general moment expres-
sions suitable for various desorption constants. Moreover while
the skew of elution curves exceeds 1 much, they are hard to be
expanded in Cram–Charlier series or similar series at all.
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We have presented a new stochastic theory based on mass bal-
ance principle, in which the lateral diffusions are involved [10], and
used in linear capillary chromatography with uniform stationary
phases and with multiple-site nonporous layer stationary phases
[11,12]. But the case of porous layers is much more complex. In this
paper we intend to think over all the factors which affect the linear
capillary adsorption chromatography with porous layers, including
the desorption rates and both the axial and the lateral diffusions
in stationary phases and mobile phases, as well as the structure
of stationary phases, the pressure drop in mobile phases and so
on. Starting from a series of basic parameters such as the column
parameters (the column length, the column radius, the thickness of
porous layer, the porosity and the specific surface area), the operat-
ing conditions (the linear flow rate, the time distribution of sample
injection, the gas pressure drop along the column) and the physico-
chemical parameters of solutes (the desorption rate constants, the
distribution constants, the diffusion coefficients), we calculate the
elution curves and their moments, and compare them with those in
literature. However, in this paper we will still limit the study only
in the capillary columns, not concern the more complex packed
columns.

2. General Laplace transform of elution curves

According to the random walk model [13], a solute molecule
in a column can be imagined to move in the way of
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moving–adsorbing–moving alternately progressing and to go from
the inlet to the outlet step by step. The processes can be expressed
by following formula [10–12]:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

�c =
n∑
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�j

n∑
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where n is the number of steps for a molecule to pass through a
column, �c represents the total time for a molecule to spend in the
column, �j and �j are the residence time and displacement in the
jth step respectively. Obviously, n, �c, �j and �j are all random. The
second formula in Eq. (1) represents the condition that a molecule
leaves the column. Denote
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where Pn(� ′
n ≤ t, �′

n ≤ L < �′
n + �n+1) represents the probability of

� ′
n ≤ t, �′

n ≤ L and �′
n + �n+1 > L. Let f��(z, t) be the PDF of the dis-

placement and residence time in an arbitrary step and f̃��(ω, p) be
its Fourier–Laplace transform. Generally, we add a random variable
to the subscript of a function to indicate that the function is a PDF of
the variable and add a wave above the function symbol to represent
its Laplace or Fourier–Laplace transform.
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where i is the imaginary unit. Then we have
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Making Fourier–Laplace transform of f�′
n
(t) with respect to L and

t, we have
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The practical residence time should include all possible steps,
so its PDF should be

f�c (t) =
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(t) (8)

The function of f�c (t) contains the variable of L. Its
Fourier–Laplace transform with respect to L and t is
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The Laplace transform of f�c (t) with respect to t can be given by

inverse transform of f̃�c (ω, p) with respect to ω:

f̃�c (p) = 1
2�

∫ ∞

−∞

g(ω)
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e−iωLdω (10)

The integrand of Eq. (10) has a first pole at

ω = ω(p) (11)

which is determined by

f̃��(ω, p) = 1 (12)

Using the residue theorem, the integral of Eq. (10) is calculated
approximately to be

f̃�c (p) = e−iω(p)L (13)

Here we omit a factor related to the residue of g(ω)/(1 −
f̃��(ω, p)) at ω = ω(p), for not too short columns the factor has no
influence on results. So far, we obtain the Laplace transform of
elution curves without any additional conditions.

3. Residence time and displacement in a step

A step defined in this paper contains two parts: corresponding
to the static zone and to the moving zone respectively. Let (�s, �s)
be the displacement and the residence time in the static zone per
step, (�m, �m) be the corresponding ones in the mobile zone, we
have{

� = �s + �m

� = �s + �m
(14)

Movement of solute molecules in static zones includes two
parts: diffusion in porous layers and adsorption–desorption on
solid surfaces. The corresponding displacements and residence
times are denoted by (�s1, �s1) and (�s2, �s2) respectively. Obvi-
ously all the (�s1, �s1), (�s2, �s2) and (�m, �m) are random and
characterized by their PDFs. In our model the general diffusion-
drift equations are used to determine the PDFs [11,12]. In the case
of porous layers, the diffusion in pores can be approached by the
diffusion in homogeneous media, see appendix A. Thus taking into
account the adsorption–desorption on solid surfaces, the mass bal-
ance equations of solute molecules in static zones can be simplified
as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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where C(r, z, t) represents the concentration of solute molecules
in pores, Csj(r, z, t) the amount adsorbed by the site of type j per
area of solid surfaces, C and Csj are their abbreviation respectively,
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