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a b s t r a c t

The watershed algorithm is the most common method used for peak detection and integration in two-
dimensional chromatography. However, the retention time variability in the second dimension may
render the algorithm to fail. A study calculating the probabilities of failure of the watershed algorithm
was performed. The main objective was to calculate the maximum second-dimension retention time
variability, �2tR,crit, above which the algorithm fails. Several models to calculate �2tR,crit were developed
and evaluated: (a) exact model; (b) simplified model and (c) simple-modified model. Model (c) gave
the best performance and allowed to deduce an analytical expression for the probability of failure of the
watershed algorithm as a function of experimental �2tR, modulation time and peak width in the first and
second dimensions. It could be demonstrated that the probability of failure of the watershed algorithm
under normal conditions in GC × GC is around 15–20%. Small changes of �2tR, modulation time and/or
peak width in the first and second dimension could induce subtle changes in the probability of failure
of the watershed algorithm. Theoretical equations were verified with experimental results from a diesel
sample injected in GC × GC and were found to be in good agreement with the experiments.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The growing complexity of the data generated by modern liq-
uid chromatography (LC) and gas chromatography (GC) systems
requires the development of new data analysis algorithms. The
algorithms to be applied depend on the application, and range from
base-line treatment to chromatogram alignment methods. In most
of the applications, peak detection (and peak integration) is one of
the key steps in the analysis process. Peak detection might be trou-
blesome when complex chromatograms are being analysed, with
peak numbers easily exceeding the thousands.

In one-dimensional chromatography with single-channel
detection, peak-detection methods are almost fully developed.
They are based on detecting a raise of the signal coming from
the detector and applying the condition of unimodality (i.e., the
signal should have only one maximum). Two main families of peak-
detection methods have been developed [1]: those that make use
of derivatives, and those that make use of matched filters. When a
multi-channel detector is used (e.g., MS), new possibilities for peak
detection are possible. Different algorithms have been developed
in order to make use of the relational information provided by the
existence of more than one detection channel. In particular, the
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advent of the “-omics” disciplines has stimulated the development
of a significant quantity of statistical tools, including novel methods
for peak detection in chromatography. For a review, see [2–4].

Peak-detection methods in comprehensive two-dimensional
chromatography are less advanced. This is mainly due to the fact
that these techniques are not completely mature yet. Adapting
the peak-detection algorithms developed for hyphenated tech-
niques to two-dimensional chromatography is not straightforward
for two reasons. First, in two-dimensional chromatography, the
condition of unimodality holds for both dimensions (a chromato-
graphic peak has only a single retention time in both the first
and the second dimension). This condition is normally not met
in multi-channel detection. Second, a modulation cycle in com-
prehensive two-dimensional chromatography is normally several
orders of magnitude longer than the detector’s sampling rate. This
makes a chromatogram in two dimensions to appear undersam-
pled in the first dimension as opposed to the highly sampled
chromatogram obtained with multi-channel detection. One should
note that this second condition does not apply when the two-
dimensional separation is performed in space (such as in 2D-PAGE
electrophoresis, or two-dimensional thin layer chromatography).
Opposed to separations in space, LC × LC or GC × GC are two-
dimensional chromatographic methods in time. In these methods,
a peak is analysed only a limited number of times by a (fast) sec-
ond dimension during its elution in the (slow) first dimension,
hence the low sampling rate in the first dimension. This article
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is devoted only to time-driven two-dimensional separations (i.e.,
GC × GC or LC × LC), so it is not applicable to spatially separated
chromatograms (e.g., 2D-PAGE).

So far only a limited number of peak-detection methods
for (time-driven) two-dimensional chromatography has been
described in the literature [5–7]. Only two main families of meth-
ods are available, those based on the watershed algorithm [8],
and those based on an extension of the one-dimensional peak-
detection algorithms [9,10]. The main difference between the two
families of methods relies in the fact that watershed-algorithm
based methods make use of the true two-dimensional image gen-
erated in two-dimensional chromatography, whereas the extended
one-dimensional algorithms are based on the analysis of the one-
dimensional raw signal arising from the detector. The watershed
algorithm was originally developed to delimitate single catchment
areas of geographic zones [11] (see Section 2.2.1 for a detailed
explanation), and has been adapted to peak detection in two-
dimensional chromatography by Reichenbach et al. [8]. Methods of
the second family are normally based on a two-step procedure. In a
first step, one-dimensional peak-detection algorithms are applied
to the raw, one-dimensional signal. In a second step, the previously
detected peaks are then “merged” after it has been decided that
they belong to the same modulated compound.

As it will be demonstrated in this paper, one of the main
drawbacks of the watershed algorithm is its intolerance to second-
dimension retention time variability. This intolerance may bring
the algorithm to fail, splitting a two-dimensional peak into two
peaks (or two catchment areas), when there is only a single
two-dimensional peak. Unfortunately, second-dimension reten-
tion time variability is unavoidable, and hence so is failure of the
watershed algorithm. In this article, a study is performed to pre-
dict in which situations the watershed algorithm will fail. A model
for time-driven two-dimensional chromatographic peaks is devel-
oped. The model (applicable to both LC × LC and GC × GC) is used
to calculate which combination of values for second-dimension
retention time variability, first- and second-dimension peak width,
modulation time and peak phase are not tolerated. An experimen-
tal study is performed in GC × GC to compare data calculated using
the model (and its approximations) with experiments.

2. Theory

2.1. Peak model for two-dimensional chromatography

Let us suppose a two-dimensional chromatographic peak with
known first- and second-dimension retention times (1tR and 2tR)
and known first- and second-dimension peak widths (1� and 2�).
The raw signal from the two-dimensional chromatograph (prior
to any manipulation, including “folding” the data into a two-
dimensional data table) is represented in Fig. 1. This signal can be
modelled as a sum of sub-peaks:
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where the subindex i = −∞, . . ., −2, −1, 0, 1, 2, . . ., ∞ corresponds
to the sub-peaks resulting from the modulated fractions of the
first-dimension peak injected into the second dimension, ai is the
relative abundance of the ith modulated peak (see Eq. (2)), yi rep-
resents the equation for the ith sub-peak, ti is the retention time
where the peak is represented (see Eq. (3)), and 2� is the peak
width (measured as the standard deviation) of the sub-peak in
the second dimension. Note that this model has two underlying
assumptions. First, it assumes a constant value of 2� for the dif-
ferent sub-peaks. Second, it assumes a Gaussian, symmetric peak
model. Both assumptions are not strictly true in practice, but these

Fig. 1. Schematic representation of a modulated peak following Eqs. (1)–(4), with
different values of � ((a) � = 0; (b) � = −0.5; (c) � = 0.25). Only sub-peaks i = −2, −1,
0, 1, and 2 are represented. The value of the modulation time (m) is overlaid.

assumptions are not significant for our computations. As the quan-
tity of material injected into the second dimension corresponds to
the fraction of the first-dimension peak contained between ti − m/2
and ti + m/2 (i.e., one modulation period), ai can be defined as:
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where m is the modulation time and A is a factor expressing the
total abundance of the compound. Note that the expression inside
the integral corresponds to an unmodulated peak arisen in the first
dimension, and the integral limits correspond to the fraction of this
peak contained between ti − m/2 and ti + m/2. This is a condition
for the two-dimensional chromatography to be comprehensive. In
practice, it may be possible to inject in the second dimension only
part of the sample eluted from the first. In this case, as long as this
split of the first-dimension eluent is constant along the elution, Eq.
(2) is still valid (only parameter A has to be corrected). For simplic-
ity, the first-dimension peak is centred around t = 0, but in practice
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