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A B S T R A C T

A clear image of observed object may deteriorate into an unrecognizable speckle pattern when encountering
with heterogeneous scattering media, thus it is necessary to recover the object image from the speckle pattern.
Here, a machine-learning-based support vector regression (SVR) method for imaging through scattering media is
experimentally demonstrated. The proposed method learns inverse scattering function (ISF) with known object-
and-speckle pairs, then reconstructs unknown object with the learned ISF. Essential normalization preprocessing
is pre-performed before learning the ISF. Experiments show that more training pairs lead to more accurate ISF and
higher reconstruction fidelity. The proposed method provides a general solution for imaging through scattering
media and is expected to has its potential applications on inverse problems, such as phase retrieval.

1. Introduction

Imaging through scattering media or scattering image reconstruction
has been a hot research topic in the fields of physics and biomedicine [1–
8]. Many methods have been proposed to reconstruct object images from
scattered speckle patterns. Some methods need a phase shift interfer-
ometry or a complicated calibration process to obtain the transmission
matrix (TM) of scattering media, which are based on the random
scattering theory [9–14]. Phase-retrieval based methods utilize the
principle of optical memory effects to translate the inverse scattering
problem into phase retrieval problem [15–17]. But phase retrieval
algorithms are always dependent on the initial points (so needs to
restart several times to obtain a satisfying reconstruction) and noise
sensitive (since noise would pollute the measured speckle pattern and
introduce bias to Fourier amplitude of object image). Ghost imaging
can retrieve the information of an unknown object without a spatial-
resolving detector towards it, while a reference beam is necessary and
sometimes a calibration is needed [18,19]. To some extent, this limits
the fields that the approaches can be applied to.

Machine learning (ML) has been widely tried to seek for reliable
and generalizable solutions to numerous classification and regression
tasks [20–25]. In this paper, a radial basis function based support vector
regression (RBF-SVR) method for imaging through scattering media is
proposed. The RBF-SVR method learns the inverse scattering function
(ISF) of a scattering system with a known dataset containing numbers
of object-and-speckle pairs (OS pairs in short). The imaging capability is
not only validated on images inside the dataset, but also objects outside
the dataset. Performances under different signal-to-noise ratios (SNRs)
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are evaluated through simulation. Relationship between reconstruction
fidelity and number of training OS pairs is also analysed. Experiments
show that the proposed method learns the ISF well and can be used
for imaging through scattering media. And, the proposed method is
noise robust to some extent. Besides, more learning pairs lead to more
accurate ISF and higher reconstruction fidelity. With the help of RBF-
SVR, scattering image reconstruction can be realized without knowing
the exact principle of scattering. What is more, the RBF-SVR method
can be seen as a generalized solution for inverse scattering and has a
promising prospect in inverse problems such as phase retrieval [26,27].

The rest of this paper unfolds as follows: The experimental method-
ology and the mathematical derivation of the RBF-SVR method are
presented in Section 2. Section 3 demonstrates relative experimental
results and analyses, while conclusions are drawn in Section 4.

2. Methodology

The simplified scattering system was demonstrated in Fig. 1. The
spatial light modulator (SLM, used to modulate object images) was
illuminated by a laser, then the modulated light changed its direction
with a beam splitter (BS in Fig. 1), and travelled through a diffuser (D in
Fig. 1, served as scattering media), next the scattered light was captured
by an image sensor. The relationship between input object (Object in
Fig. 1) and corresponding output speckle (Speckle in Fig. 1) can be
described as:

𝐸𝑜𝑢𝑡 = 𝑓
(

𝐸𝑖𝑛) (1)
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Fig. 1. Experiment schematic of single-layer scattering system. P, pinhole; L, lens; BS,
beam splitter; SLM, spatial light modulator; D, diffuser.

where 𝐸𝑜𝑢𝑡 ∈ 𝑅𝑀𝑜𝑢𝑡 is the vectorized output speckle pattern, 𝑓 (⋅)
denotes the forward scattering function (FSF), 𝐸𝑖𝑛 ∈ 𝑅𝑀𝑖𝑛 represents
the vectorized input object image. 𝑀𝑖𝑛 and 𝑀𝑜𝑢𝑡 are the pixel numbers
contained in input object and output speckle, respectively.

Support vector regression (SVR) is utilized to conduct scattering
image reconstruction [28]. The main two parts of SVR are training a
model and regressing with the model. Here, the model is the ISF of the
scattering system (see Fig. 1), and the regression is the reconstruction
of unknown object images. The whole schematic of the proposed
method is demonstrated in Fig. 2. To train the ISF, a dataset containing
adequate known OS pairs should be established to provide the training
data. 𝑙2-𝑛𝑜𝑟𝑚 based normalization preprocessing is considered for each
captured speckle pattern. With known training pairs, the ISF can be
learned column by column. Once ISF learned, image reconstruction can
be accomplished immediately. The aim in this paper is to reconstruct
the original input object from a given unknown speckle pattern, which
can be written as:

𝐸𝑖𝑛 = 𝑓−1 (𝐸𝑜𝑢𝑡) (2)

where 𝑓−1(⋅) denotes the ISF to be learned.
The ISF is modelled by solving the following problem:

min
𝑤,𝑏

1
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|

|

|

− 𝜀
)

(3)

where 𝑤 denotes the inverse sensing matrix and follows 𝑓−1(𝐸𝑜𝑢𝑡) =
𝑤𝑇𝐸𝑜𝑢𝑡 + 𝑏 (𝑏 is the intercept vector of ISF), 𝐶 is a constant parameter
trading between regularization and violation, 𝐸𝑜𝑢𝑡

𝑛 is the 𝑛th output
speckle, 𝐸𝑖𝑛

𝑛 represents the 𝑛th input object, 𝜀 represents a parameter
indicating the acceptable error, 𝑁 is the number of training pairs.

As for any 𝐿2-regularized linear model, their optimal solution can be
represented as linear combination of independent variables. Mapping
the speckle space into feature space and the optimal solution of Eq. (3)
can be rewritten as 𝑤 =

∑𝑁
𝑛=1 𝛽𝑛𝜙

(

𝐸𝑜𝑢𝑡
𝑛

)

, where 𝛽𝑛 is the coefficient
corresponding to 𝑛th speckle pattern, 𝜙 (⋅) denotes a mapping function.

Substituting the solution to Eq. (3) and applying the kernel trick, we
obtain: [28,29]
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(4)

where 𝐾 (⋅, ⋅) denotes the applied kernel function.
In this paper, the utilized kernel function, radial basis function (RBF),

is defined as:

𝐾
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(5)

where 𝜎 is a positive real number.

For comparison, polynomial function based support vector regres-
sion (PF-SVR) method is also considered, where polynomial function
serves as the kernel function and is defined as:

𝐾
(

𝐸𝑜𝑢𝑡
𝑛 , 𝐸𝑜𝑢𝑡

𝑚
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𝑚 + 𝑐
)𝑝

(6)

where 𝑎 and 𝑐 are real numbers, 𝑝 is a nonnegative integer indicating
polynomial order.

Parameter 𝐶 in Eq. (4), as well as parameter 𝑎, 𝑐, 𝑝 in Eq. (5) and
parameter 𝜎 in Eq. (6), are all decided by the combination of grid
searching algorithm and cross-validation strategy to obtain an optimal
ISF [30]. Then with the obtained ISF, by substituting kernel function
expressions to Eq. (4) separately and solving it, inverse scattering or
scattering image reconstruction can be accomplished. Reconstruction or
regression fidelity is evaluated with peak signal-to-noise ratio (PSNR),
which is defined as:

𝑃𝑆𝑁𝑅 = 10 ⋅ log10

(

𝑀𝐴𝑋𝐼
2

𝑀𝑆𝐸
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(7)
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𝑟𝑒𝑐𝑜𝑛(𝑥, 𝑦)]
2 (8)

where 𝑀𝐴𝑋𝐼 denotes the maximum possible pixel value of images
and 𝑀𝐴𝑋𝐼 = 255 when pixels are presented in an 8-bit format. 𝑚𝑥
and 𝑚𝑦 represent the number of pixels of images in 𝑥-axis and 𝑦-axis,
respectively. 𝐸𝑖𝑛

𝑟𝑒𝑐𝑜𝑛 means the reconstructed object image with learned
ISF. From the definition, it is obvious that higher PSNR value means
higher image reconstruction fidelity.

3. Experimental results

Next, experiments were conducted to verify the methodology illus-
trated above. The wavelength of employed laser is 532 nm. A SLM
(HES6001, Holoeye) with resolution of 1920 × 1080 and pixel pitch
of 8 μm was used to modulate object images. A 220 grit ground-
glass diffuser (DG10-220-MD, Thorlabs) served as scattering media. A
CMOS image sensor (C13440-20CU, Hamamatsu) with resolution of
2048 × 2048 and pixel pitch of 6.5 μm was used to record speckle
patterns. The CBCL Face Recognition Database (provided by the Center
for Biological and computational Learning at MIT) was used to provide
face and non-face images [31]. The face images in the Database were
collected from different persons. The non-face images were different
structured random textures. Each image in the database was enlarged
to 20 × 20, i.e., 𝑀𝑖𝑛 = 400. We enlarged and modulated images
(for training purpose) one by one into the SLM, and collected the
corresponding output speckle patterns at the end of the scattering system
(showed in Fig. 1), then experimental training OS pairs were generated.
Experimental testing OS pairs were generated the same way. For the
convenient of training, the pixel number of each output speckle pattern
was also sampled to 400, i.e., 𝑀𝑜𝑢𝑡 = 400. 𝑙2-𝑛𝑜𝑟𝑚 based normalization
preprocessing was considered for all speckle patterns before learning
ISF.

Examples of the training and testing OS pairs were shown in Fig. 3.
Objects (see Fig. 3(a) and (b)) travelled through scattering system and
only unrecognizable speckles (see Fig. 3(c) and (d)) could be recorded.

In the first experiment, 400 face images of the database were chosen
randomly to be input object images of the scattering system (see Fig. 1)
to collect their output speckle patterns one by one, to form training
pairs. Face images and non-face images were also randomly chosen
from the rest of the database to generate testing pairs. With the 400
facial OS pairs, as well as the proposed train-and-reconstruct procedure
(see Fig. 2), the ISF could be learned. Once the ISF was learned,
given an arbitrary unknown speckle pattern, the reconstruction can be
accomplished immediately. The reconstructions of PF-SVR and RBF-SVR
were listed in Fig. 4.

In reconstructions of training face images, the averaged PSNR of PF-
SVR was 23.7 dB (see Fig. 4(a)) while that of RBF-SVR was 24.2 dB (see
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