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a b s t r a c t

Quantitative structure–retention relationships (QSRR) models were built for a data set consisting of 96
essential oils and used to predict their gas chromatographic (GC) retention times (tR). Multiple linear
regression (MLR), principal component regression (PCR), and partial least squares (PLS) have been applied
to build different QSRR models by using 13 nonzero E-state indexes and 56 descriptors calculated from
TSAR software. The three chemometric methods (MLR, PCR, and PLS) for evaluation of GC tR values of
essential oils have been compared. The best model based on the whole data set derived from MLR model
(model M2) appears to be the best predictive power (r2 = 0.9689 and q2 = 0.9631) for this data set. The
whole data set was splitted into a training set consisting of 72 compounds and a test set consisting of
24 compounds. The model based on the training set derived from MLR offered the highest r2 of 0.9756
and q2 of 0.9693. The best model base on the training set obtained from PLS not only showed a good
internal predictive power (r2 = 0.9703 and q2 = 0.9633) but also offered the highest external predictive
power (R2 = 0.9588 and q2

ext = 0.9572). The results showed that two E-state indexes (sssCH and sOH) and
five molecular connective indices (1�B, 2�p, 3�C, 4�C, and 6�p) closely relate to the GC tR values of essential
oils. The applicability domain of the QSRR models were defined by control leverage values (h*) and the
models can be used to predict the unknown compounds falling in this domain.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Essential oils, a new approach to prevent the proliferation of
microorganism or protectetion of food from oxidation, are ubiqui-
tously used as antibacterial [1–3], antifungal [3,4], and antioxidant
[5] and made them useful as natural additives in the food industry.
They are also used to control human diseases of microbial origin
and to cure such diseases as atherosclerosis and cancer [6]. These
essential oils have been used in the folk medicine for thousands of
years as antimicrobial [7,8]. Therefore, the assessment of gas chro-
matographic (GC) retention times (tR) of essential oils is a matter
of great importance in the health of human being.

The evaluation and characterization of essential oils such as
the extraction with organic solvents and simultaneous steam dis-
tillation were analyzed by GC analysis. Following GC analysis,
identification of the ingredients in the essential oils can be car-
ried out. Many researchers have studied on the GC tR values of
essential oils through experimental determination. Capillary one-
dimensional gas chromatography (1D-GC) and multi-dimensional
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gas chromatography (MD-GC) have routinely been used to ana-
lyze the volatile constituents of essential oils [9–21]. The 1D-GC
methods, however, extend run times of the complex nature of
essential oil samples. The MD-GC methods are only able to analyze
a few discrete and critical regions of the chromatogram. More-
over, its analysis time is also further extended. The experimental
determination of GC tR values are time-consuming and expensive.
Thus, it is important to use convenient way such as quantitative
structure–retention relationships (QSRR) model for the prediction
of GC tR values.

QSRR can be used for prediction of tR values of chemicals. The
process of QSRR model development for GC tR values can be gen-
erally divided into three stages: data preparation, data analysis,
and model validation [22]. The first stage includes collection of
GC tR values and calculation of molecular descriptors. The second
stage includes an application of statistical approaches for QSRR
model development. The last step is validation of QSRR model being
built. The study of GC tR values of different kinds compounds by
QSRR have been found in several literature [23–26]. Seldom QSRR
researches, however, have been found for the essential oils. Riahi
et al. [27] studied on the retention indices of the components of
the 44 essential oils by use of QSRR analysis based on genetic algo-
rithm. Liao et al. [28] applied molecular electronegativity-distance
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vector (MEDV) descriptors for the GC tR values of 69 components
from essential oil of Paulownia tomentosa flowers. The MEDV-based
QSRR model, however, was not strictly validated by external sam-
ples and only offered r2 of 0.9293 and q2 of 0.9101. Therefore, it is
still necessary to further study on the GC retention time of essential
oils by using QSRR model.

The main theme of this study is the application of QSRR for GC
tR values of the essential oils and compares the results of multi-
ple linear regression (MLR), principal component regression (PCR),
and partial least-squares regression (PLS) for the evaluation of GC
tR values. The selection of optimum descriptors was performed by
using variable selection and modeling method based on prediction
(VSMP) [29], which was developed in our laboratory. The model
was validated by internal validation (leave-one-out (LOO) cross-
validation) and external validation (validate by external samples).
The criteria recommended by Golbraikh and Tropsha [22] were used
to assess the actual predictive power of the models. The domain of
QSRR application was defined by leverage [30] and the models can
be used to predict GC tR values for untested compounds that belong
to this domain.

2. Material and methods

2.1. The data set and descriptors

The data set of GC retention times (tR) of 96 essential oil
compounds was taken from the values reported in the literature
[31] and listed in Table 1 . Retention times on a 30 m × 0.25 mm
internal diameter (I.D.) HP5-MS fused silica with a film thick-
ness of 0.25 �m (Agilent Technologies), were determined by gas
chromatography/mass spectrometry (GC/MS). The GC system was
operated under temperature programmed conditions: 60 ◦C for
1 min to 260 ◦C at 5 ◦C/min, then held isothermal for 10 min. Helium
was used as the carrier gas at an initial pressure of 89.0 kPa for
1 min and then programmed at 1.6 kPa/min to a final pressure of
152.0 kPa, with a hold of 10 min. The tR values of 96 essential oils
cover a wide range from 5.02 (compound 1, tricyclene) to 45.76
(compound 96, ethyl palmitate). Nineteen compounds display the
tR values between 5.00 and 10.00, 27 between 10.00 and 20.00, 30
between 20.00 and 30.00, and 20 between 30.00 and 50.00. The
distribution of GC tR values of 96 essential oils are shown in Fig. 1.

The QSRR analyses were performed using E-state index, molec-
ular attributes, and molecular indices. There are 41 original E-state
index descriptors for a given compound. The values of 28 E-state
index for the essential oils equal to zero and only 13 nonzero E-state
indexes were used in this study. Various molecular attributes such

Fig. 1. Distribution of retention time (tR) values for the whole data set.

as molecular mass, molecular surface area, and log P were calcu-
lated using TSAR 3.3 software (Accelrys, Oxford Molecular Limited,
Oxford, England, 2000). The molecular indices such as molecular
connectivity indices [32], shape indices [32], and topology indices
(Randic [33], Balaban [34], and Wiener [35]) were also calculated
using TSAR 3.3 software. The E-state index, molecular descriptors,
and molecular attributes are given in Table 2.

2.2. The calculation of E-state index

E-state index, which was developed by Kier and co-workers
[36,37], is a 2D topological molecular structures and based on atom
levels. It closely related to molecular connectivity, but it only needs
to classify the electronic valence of molecular environment and par-
tial topological information of non-hydrogen atom and need not to
break up the fragment subgraph in every order.

The calculation of E-state index was summarized according to
the original literature of E-state index [37] and our previous study
[38]. First, the intrinsic state (I) of every atomic type is calculated:

I = [(2/N)2ı� + 1]/ı (1)

where N is the principal quantum number for the valence shell of
that atom; ıv and ı are the molecular connectivity ı values, which
are given in Eq. (2).

(ı = � − h, ı� = � + n + � − h) (2)

where � and � are the number of electrons in � and � orbital,
respectively; n is the number of electrons in lone pairs; h is the
number of hydrogen atoms bonded to the atom.

Then, the other non-hydrogen of perturbation term (�Ii) in
molecular topological and the E-state index for atom i, named as
Si, are defined as follows:

�Ii =
all∑

j /= i

(Ii − Ij)/(dij + 1)2 (3)

Si = Ii + �Ii (4)

where dij is the shortest graph distance between atoms i and j.

2.3. Molecular connectivity indices

Hall and co-workers [32] have developed molecular connectivity
indices (Chi) that reflect the atom identities, bonding environ-
ments and number of bonding hydrogens. Molecules that are drawn
without hydrogen atoms can be decomposed into fragments of
length m, which may be divided into different categories. Hall and
Kier defined four series of fragment categories: path (P), cluster
(C), path/cluster (PC), and ring (CH). The spread and numbers of
fragment membership for each category is defined by molecule
connectivity.

Fragment of length 1 can only be of type path. Kier Chi1 (1�p)
is based on a contribution from every molecule edge, i.e., TSAR 3.3
for windows (Reference Guide, Oxford, England, 2000),

1�p =
T∑

j=1

T∑

i=1

[(ıjıi)
−0.5] (5)

where i and j are bonded to give a fragment and there are T frag-
ments of path length 1, in the skeleton.

For Chi of order m ≥ 2 fragments may be of type path, cluster, or
ring (ring/clusters are formed for m ≥ 4). Each index type is defined
as a sum of connectivity terms cs. For a special category type t, with
a membership of T fragments made up of N atoms, the connectivity
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