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Quantitative structure-retention relationship (QSRR) models were studied for two databases: one with
151 compounds and the other with 1719 compounds. In both cases, the three modeling methods employed
(multiple linear regression, partial least squares, and random forests) provided similar prediction results
with regard to root-mean-square error of prediction. The reversed-phase retention related seven molec-
ular descriptors provided better models for the smaller dataset, while the use of over 2000 molecular
descriptors generated better models for the larger dataset. The QSRR models were then validated with a
mixture of an active pharmaceutical ingredient and its four process/degradation impurities. Finally, clas-
sification of compounds based on similar log D profiles before QSRR modeling improved chromatographic
predictability for the models used. The results showed that database composition had a desirable effect

LogD on prediction accuracy for certain input molecules.
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1. Introduction

With ever more diverse stationary phases available, it becomes
more challenging for analysts to select a suitable chromatographic
system or even a starting point for method development. This is
especially the case in HPLC method development for the phar-
maceutical industry, where methods are needed to control many
related impurities at an ever faster pace. The employment of smaller
diameter particles and higher pressure HPLC systems are currently
the popular approaches to improve efficiencies in method devel-
opment. In addition, column characterization and classification
methods are well studied [1-5] and used to guide analysts to
choose either similar or dissimilar stationary phases depending on
development needs. However, despite the aforementioned tools,
the inevitable and sometimes time and resource intensive task of
screening multiple HPLC conditions is necessary to achieve an ade-
quate methodology. Thus, in an effort to minimize the number of
experiments needed, quantitative structure-retention relationship
(QSRR) methods are intensively studied for chromatographic reten-
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tion predictions [6-8]. Ideally, by comparison of predicted retention
results across available chromatographic conditions, one would be
able to pick the best condition as a starting point for method devel-
opment.

In QSRRs, as its name carries, retention is modeled as a func-
tion of molecular descriptors, which are the numeric transforms of
molecular structures. The descriptors can be either experimentally
determined or theoretically computed. In the former case, QSRRs
are more widely known as the linear solvation energy relationships
(LSERs) [9-13]. When building LSER models, only those molecules
having experimental molecular descriptors available can be used.
On the other hand, molecular descriptors of any molecule can be
computed for QSRR modeling, and there are many thousands of
descriptors defined in the literature [14]. Despite the large number
of descriptors available and numerous studies carried out [6-8],
“...a suitable translation, which would reveal the properties of
compounds encoded into their structure in a reliable manner, is still
lacking” [8]. Multiple linear regression (MLR) was the first statisti-
cal tool widely used for QSRR models [6,15]. With the introduction
of additional molecular descriptors, many new chemometric mod-
eling tools have been applied to QSRR modeling, such as genetic
algorithms on MLR (GA-MLR) [16,17], partial least squares regres-
sion [18-21], artificial neural networks [13,21-23], support vector
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machines [24-27], classification and regression trees [18,28,29],
and random forests [18].

Successful QSRR models for specific classes of compounds
have been constructed for gas chromatography, HPLC, supercritical
fluid chromatography, and micellar electrokinetic chromatogra-
phy [6-8,30,31]. With respect to general method development,
Schefzick et al. built QSRR models from 62 structurally diverse com-
pounds for 75 chromatographic conditions using GA-MLR models
selecting from over 1000 molecular descriptors [16]. Baczek et al.
demonstrated the combination of QSRR modeling for two differ-
ent gradient slopes and linear solvent strength theory to predict
the optimized gradient profiles for unknown molecules using 15
training molecules and 3 molecular descriptors [22,32-34].

In this study, the performance of QSRR models were compared
using two different sets of molecular descriptors, three modeling
methods, and two databases differing significantly in size. A real
world example was then used to validate the models constructed
using two sets of chromatographic conditions, and the importance
of database composition was demonstrated. While it would be bet-
ter to disclose the compounds used in this study, it was not possible
due to proprietary reasons. However, to demonstrate the diversity
of the datasets, the distribution of nearest neighbor distances was
included to give the readers an understanding of the scope of the
investigation.

2. Experimental
2.1. Dataset

Two datasets were used for this study: dataset 1 with 151
pharmaceutical compounds; dataset 2 with 1719 compounds. The
chromatographic data of dataset 1 compounds were collected using
an Agilent 1200SL HPLC system (Santo Clara, CA, USA), equipped
with an autosampler, a micro vacuum degasser, a binary pump, a
column thermostat, a diode array detector, and ChemStation soft-
ware for data processing. Dataset 2 compounds were analyzed on
an Agilent 1100 HPLC system with a similar configuration to the
Agilent 1200SL system described above. Both acidic and basic gra-
dient chromatographic conditions were studied on an X-bridge C18
75 x 4.6 mm, 5 pum (Waters, Milford, MA, USA) column for dataset
1, whereas the basic condition was studied for dataset 2. The aque-
ous phases (solvent A) were 0.1% aqueous trifluoroacetic acid (TFA)
(prepared with >99.5% pure TFA from Thermo Scientific, Rockford,
IL, USA) solution and 10 mM ammonium bicarbonate pH 10 buffer
(Mays Chemical Company, Indianapolis, IN, USA) for acidic and basic
gradients respectively. Neat acetonitrile (Omni Solv, Gibbstown, NJ,
USA) was used as the organic solvent (solvent B) in both conditions.
In both acidic and basic gradients, %B was increased linearly from 5
to 100% in 10 min. All HPLC experiments were run at 2 mL/min, at
room temperature (~22 °C).

2.2. Calculation of molecular descriptors

A total of 2352 numeric molecular descriptors were calculated
for each specific chemical structure input in the SMILES format by
using in-house software and commercial software. These descrip-
tors include logP from CLOGP software (BioByte, Claremont, CA,
USA), Lilly internal implementation and extension of published
two-dimensional (2D) descriptors such as estate-related descrip-
tors [35], Molconn [36], MACCS keys [37], CATS [38], Ghose-Crippen
[39,40], three-dimensional (3D) descriptors such as CPSA [41],
CoMMA [42] and MoRSE [43], and other 2D and 3D pharmacophore
shape related descriptors. The 3D structure generator CORINA [44]
was used to calculate 3D structures for each molecule. In a word,
these 2352 descriptors cover different constitutional, topological,

geometrical, electrostatic, physical, and shape descriptors. In addi-
tion, logD values at pH 7.4 and other pHs (from 0 to 14) were
computed with Marvin software by ChemAxon (Budapest, Hun-

gary).
2.3. Modeling methods

Three different modeling methods were employed for this
study: MLR, partial least squares (PLS), and random forests (RF).
These modeling methods have been used in QSRR before, and
are readily available from standard software packages such as
Matlab. However, our modeling was done with Lilly in house soft-
ware packages. MLR is attractive for its simplicity relative to more
complex models like PLS and RF. PLS has the potential to con-
struct more predictive models when there is correlation in the
molecular descriptors (i.e., latent factors representing hydropho-
bic, dispersive, and polar interactions derived from a combination
of molecular descriptors may be more predictive than a pre-
specified set of descriptors representing these interactions). RF has
the potential to model non-linear relationships as well as statisti-
cal interactions (e.g., a dataset containing multiple binding modes
of small molecules to a biomolecular target). The MLR and PLS
methods were implemented in the SAS system (PROC REG and
PLS, respectively) and used an information criterion (predictive
determination coefficient) to control for overfitting [45,46]. The
predictive determination coefficient (Rcv?) is similar to other infor-
mation criteria like the Akaike (AIC) and Bayesian (BIC) information
criteria, but penalizes more relative to AIC or BIC to avoid overfit-
ting and has been shown empirically to be a reasonable surrogate
for future prediction error [45]. For the MLR method, forward vari-
able selection was done with the predictive Rcv2 used to determine
how many terms to include in the linear model. A similar strat-
egy was taken with PLS, using the predictive Rcv? to determine the
number of latent variables to include in the PLS model.

2.4. Model evaluations

Each dataset was randomly split into two sets, 70% as the train-
ing set and 30% as the testing set. By comparing the predicted
and experimental retention time for the 30% testing set, root-
mean-square error of prediction (RMSEP) and Rcv? were computed.
Twenty random splits were performed for each database with the
distribution and mean RMSEP and R? values used to estimate the
predictability and to permit comparison between different models.

3. Results
3.1. Characterizing dataset 1

Agroup of 151 representative drug-like compounds was selected
for initial QSRR modeling. All compounds were identified from an
in-house database, and fell within drug-like boundaries accord-
ing to Lipinski’s Rule of Five [47]. In order to assess the internal
diversity of the dataset, a composite molecular fingerprint [48]
was generated for each dataset using in-house tools. Those finger-
prints were used to determine the nearest neighbor (NN) distance
(1.0 — similarity, also known as Soergel distance [49]) for each
molecule in the set, relative to all other molecules in that set. In a
very diverse set of molecules, this distribution would be expected to
tend towards longer distances, while a non-diverse set of molecules,
like an SAR series, or a combinatorial library, would exhibit shorter
distances on average. Since just the nearest neighbor distances are
used, the distribution is for 151 points. Dataset 1 shows a distinct
lack of short distance near neighbor relationships (Fig. 1), indicating
very good internal diversity within this set—average NN distance of
0.34.
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