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Optimization of separations in gas chromatography is often a time-consuming task. However, computer
simulations of chromatographic experiments may greatly reduce the time required. In this study, the
finite element method was used to predict the retention times and peak widths of three analytes elut-
ing from each of four columns during chromatographic separations with two temperature programs. The
data acquired were displayed in predicted chromatograms that were then compared to experimentally
acquired chromatograms. The differences between the predicted and measured retention times were typ-
ically less than 0.1%, although the experimental peak widths were typically 10% larger than expected from
the idealized calculations. Input data for the retention and peak dispersion calculations were obtained
from isothermal experiments, and converted to thermodynamic parameters.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Gas chromatography [1] is a robust, consistent technique for
separating analytes in samples, but optimizing the separation of
complex samples can be very time-consuming. The development
of good calculation tools is therefore an important task that has
been addressed by several authors [2-26].

The finite element method has been applied for diverse pur-
poses in physico-chemical investigations, for instance to model the
transport of various substances through different media [27,28], the
migration of additives in polymeric packages during contact with
food [29], the convection, diffusion and reactions of particles [30]
and stress distributions in liquid chromatography columns [31]. It
has also been used to predict the retention times and peak widths
of analytes during liquid chromatography [32], two-phase partition
chromatography [33], and acoustic chromatography [34]. However,
it has not previously been applied to gas chromatography.

Several commercial software packages are now available for
finite element calculations, for instance Ansys (Ansys Inc., USA),
Comsol Multiphysics (Comsol AB, Sweden) and Flux-Expert®
(Astek, France). The finite element method is very flexible since a
wide variety of differential equations may be used, it often gives
accurate and reliable results, and the calculations are no longer
very time-consuming (which used to be a major drawback of the
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method) since standard office computers are much faster than they
were just a few years ago.

In this paper, we present a theoretical model for the prediction
of retention times and peak widths in gas chromatography that can
be solved by the finite element method. The retention and peak dis-
persion parameters are determined for each of three test analytes
in chromatographic separations with four types of columns and (in
each case) two temperature gradients, using thermodynamic data
for the chromatographic system acquired from isothermal exper-
iments. The predicted results are then compared to experimental
data acquired under the same running conditions.

11. Theory

In the finite element method, a differential equation is solved
in a solution domain divided into small mesh elements. In gas
chromatography applications, the column can be considered as
a one-dimensional domain wherein an appropriate equation is
solved. Within each element, parameters such as temperature,
pressure, and mobile phase velocity are considered constant.

During a non-isothermal separation, e.g. in a temperature-
programmed experiment, the temperature can be regarded as a
function of time

T =f(t) (1)

When an analyte is moving through a column during a
separation under such conditions in a gas chromatograph, the con-
centration c at a position x along the column axis at a time t may
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be determined by using a one-dimensional transient convection-
diffusion equation [35,36]
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5% —a(ueffc) + P <Deffax) (2)

where uqg and Degr are, respectively, the effective velocity and
the effective diffusion of the analyte. The effective velocity can
be calculated from the velocity uy(x, t) of the mobile phase and
the temperature-dependent (and hence time-dependent in a non-
isothermal experiment) retention factor ki of the analyte in the
column used
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The effective diffusion can be calculated from
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where D(x, t) is a local dispersion term that depends not only on
static longitudinal diffusion but also on dynamic diffusion caused
by the resistance to mass transfer in the mobile and stationary
phases.

The local dispersion D(x, t) may be expressed as

D(x, ) = S H(x, ) (5)
where H(x, t) is the local plate height is defined [36] as
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In this equation, d(o?) is the incremental second moment (i.e.
variance) of a normalized packet of gaseous analyte. The quan-
tity d(o2) may be found from the following differential equation
[35,36]:

d(o*) = (H(X’ B+ ueff(ZX t) 3uefgix’ Z _02> dx )

Since the local plate height may be expressed as [37]
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The local dispersion term can also be formulated as [37]

H(x,t)= (8)
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The diffusion constant in the mobile phase may be calculated
[38] from

TORE
p(x)
where D¢ is a constant that depends on the molar weights together
with the atomic and structural diffusion volumes of the analyte and

mobile phase molecules.

The local pressure p(x) may be determined [39] from the inlet
and outlet pressures, p;, and poyt (i.e. the pressures at,x=0and x =1L,
respectively) from the equation:

Dy (x, t) = Dc

(12)
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The prediction of the diffusion constant in the stationary phaseis
an important but very difficult task that has been addressed by sev-
eral authors. It is however today impossible to find a single model
that give good accuracy for all systems that include a liquid solvent
[40]. In this paper, the approximation by Snijders et al. 18] assuming
a linear relationship between the diffusion constants in the mobile
and the stationary phase was used:

Dwm(x, t)
5 x 104

The effect of different equations based on known values of sol-
vent viscosities, etc. will be considered in a future paper.

The velocity of the mobile phase may be calculated using the
equation

Ds(x,t) = (14)
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where the viscosity [39] n for a temperature T may be determined
from

n(e) =10 (%)) (16)

provided that the gas type dependent exponent «;, and the viscosity
no atareference temperature Ty are known. The retention factor can
be determined from

k(t) = %

where K is the distribution coefficient, and the phase ratio f is
defined as

(17)
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The distribution coefficient may be calculated from
AH AS
InK(t) = NGRS (19)

where AH and AS are the changes in enthalpy and entropy, respec-
tively, associated with a movement of the analyte from the mobile
phase to the stationary phase, and R is the molar gas constant. If
AH and AS depend on the temperature, and hence on the time in
the temperature program, then

AH(t) = AH(Tpef) + ACy - (T(t) — Trer) (20)
AS(t) = AS(Tyeg) + AC, - (INT(£) — In Trer) (21)

where ACp is the difference in isobaric heat capacity associ-
ated with movement of the analyte between the mobile and the
stationary phase. Eq. (19) may then be expressed as
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Hence, if values of InK are known for at least three tempera-
tures T, it is possible to determine AH(Tief), AS(Tef) and AC, for
an arbitrary T, The distribution coefficient may then be deter-
mined for all temperatures within the interval used to determine
the parameters.

The analytes may be assumed to have a Gaussian distribution
at the start, and thus the initial concentration (i.e. for t=0) for all
analytes may be set to
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