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a b s t r a c t

A volume averaging technique for modeling electroosmotic and pressure driven flow in microchannels is
applied to a packed capillary electrochromatography column. This model can be applied to fluid flow in
both porous and open channels and can account for porosity variation in the column due to packing and
zeta potential mismatches between the wall and the packing material. Numerical results are presented
and compared with experimental results from the literature. Several different porosity models are shown
to produce similar concentration profiles and allow the model to reproduce wall effects observed in
experimental columns.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

It is well known that wall effects in high performance liquid
chromatography (HPLC) and in capillary electrochromatography
(CEC) can impact the efficiency of these techniques [1]. In columns
packed with spherical beads, packing inefficiencies increase the
porosity near the column wall. This region of higher porosity (and
larger pore size) can increase the velocity of the fluid near the col-
umn wall. In CEC, this effect is compounded by the possibility of
a zeta potential mismatch between the packing material and the
column wall.

An analytical model for the fluid velocity developed by Rathore
and Horvath [2] took into consideration the possible effects of a
zeta potential mismatch for thin double layers, but neglected the
effect of an increase in porosity near the wall [3]. An analytical
expression taking both effects into account was derived for fluid
flow through a column with two different regions of porosity [4].
However, the porosity variation seen in practice is actually an oscil-
lating function of position that decays exponentially away from the
column wall [3]. This cannot be easily modeled analytically, and
thus must be considered using a numerical approach [5,6]. In this
work, the model is first validated by comparison with average flow
velocity measurements of Liapis and Grimes [7]. Effects of poros-
ity variation are then considered using the finite element method,
and compared to the published experimental results of Tallarek et
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al. [8], who used magnetic resonance imaging to investigate wall
effects in CEC columns.

2. Background

2.1. Generalized porous medium equation

The model employed utilizes a formulation of a generalized
porous medium equation that incorporates electroosmotic forces
[4]. This model is based upon a scaling of the Navier–Stokes
equations, with additional terms that account for the resistance
provided by the packing material.

In this model a porous medium is conceptualized as a solid
medium filled with hollow, tortuous (winding) capillaries. It can
be described geometrically in terms of its void volume fraction, or
porosity ε, its pore winding factor, or tortuosity �, and its average
pore size ap.

For an array of Np cylindrical pores, the external porosity can be
expressed as

ε = Vvoid

Vtotal
= Np�a2

pl

AL
(1)

where l is the length of the cylinder, A is the cross-sectional area of
the porous medium, and L is the length of the porous medium. The
tortuosity can be defined as [9]

� =
(
l

L

)2

(2)
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For a bed of Np packed spheres, the porosity can be defined as

ε = AL − Np�d3
p/6

AL
(3)

where dp is the particle diameter. A commonly used definition for
the effective solid particle diameter is [10]

dp = 6
Vs

As
(4)

where Vs and As are the volume and surface area of the solid phase,
respectively. This can be used to relate the solid particle diameter
to an effective pore size ap through Eq. (1), resulting in

dp = 3ap
1 − ε
ε

(5)

In this work, the model employed will be a generalized porous
medium equation that is based upon the volume-averaged scaling
of the Navier–Stokes equations. The volume-averaged velocity, ū,
is the average volume flow per unit area of the porous medium,
which is the apparent velocity with which the fluid flows through
a cross-section of material to account for the total volume flow, U.
This must be contrasted with the intrinsic average velocity of the
fluid, uave, which is the actual average velocity at which the fluid
is moving inside the winding pores that make up only a fraction
of the cross-sectional area of the porous medium. The two can be
related by

uave = ū A
Ae

= ū
√
�

ε
(6)

where the effective cross-sectional area Ae can be defined as

Ae = Np�a
2
p = ε√

�
A (7)

This distinction will be important when comparing theory with
experimental data, as different techniques are often used to esti-
mate the average velocity. The average velocity could be inferred,
for example, either by measuring an increase in fluid volume over
time, or by monitoring the time required for a dye in the fluid to
travel a certain distance. The first example would be an estimate of
the average volume flow ū, while the second would be an estimate
of the intrinsic average velocity in the pores uave.

The volume-averaged model for flow in porous media can be
expressed using the generalized porous medium equation as
√
�

ε

∂ū

∂t
+

√
�

ε
ū · ∇

(
ū

ε

)
= − ∇P√

��w
+ �√

�
∇2

(
ū

ε

)
−�eff∇�√

��w
+F (8)

∇ · ū = 0 (9)

where P is the applied pressure, � is the applied potential, � is the
fluid kinematic viscosity, �eff is the effective charge density, �w is
the mass density of the fluid and F is the drag force. The drag pre-
sented by the solid portion of the medium, Fd, is usually taken into
consideration by adding a Forchheimer force, described in terms of
the permeability, K of the medium, to the Navier–Stokes equations.
The Forchheimer force can be expressed using Ergun’s relations
[11], as

F = −�eū

K
−
Fεū

∣∣ū∣∣
√
K

(10)

The constant�e is the effective viscosity of the fluid in the porous
medium, and is often considered to be the same as �. The perme-
ability is

K = εm2

ko
√
�

(11)

where the mean hydraulic radius m = ε/S with S equal to the surface
area per unit volume of the medium, and the shape factor ko = 2 for
most cases. For a bed of packed spheres, S can be written as

S = Np�d2
p

AL
(12)

which after inserting Eq. (3) for the porosity simplifies to

S = 6 (1 − ε)
dp

(13)

Inserting this into the definition of permeability results in the
Carman–Kozeny permeability [12]

K = ε3 d2
p

36ko
√
�(1 − ε)2

(14)

The remaining constant in Eq. (10) is given by

Fε = 1.75√
36ε3ko

√
�

(15)

The effective charge density, �eff, can be shown to be given by
[4]

�eff = εεw o√
�K

(∫∫
 (r) dAp

 oAp
− 1

)
(16)

where  o is the zeta potential of the pores, εw is the permittivity
of the fluid, and the integral is over the cross-sectional area of the
pore, Ap. If the double layers are thin, this reduces to

�eff = −εεw o√
�K

(17)

The above Eqs. (8)–(15) are valid for incompressible fluid flow
in both porous and open channels. If the porosity and tortuosity
approach unity, the permeability grows towards infinity, and the
generalized porous medium equation reduces to the Navier–Stokes
equations. This makes the above model suitable for modeling the
effect of an oscillating porosity that approaches unity near the wall.

It can be shown that, if the flow is steady, and the velocity is small
enough, the nonlinear terms can be neglected and the general-
ized porous medium equation reduces to a variation of Brinkman’s
equation, but with electroosmotic forces included:

�√
�
∇2

(
ū

ε

)
− �eū

K
= 1√

��w
(∇P + (� (r) + �eff) ∇�) (18)

plus the continuity Eq. (9). It is the Brinkman equation that will be
used to study wall effects in this work.

Analytical solutions to the Brinkman equation [4] reveal that
wall effects are typically constrained to boundary layers defined by
the inverse Brinkman screening length 	, analogous to the inverse
Debye screening length 
:

	 =
√
ε
√
�

K
(19)

If the ratio of column radius b to the Brinkman screening length
1/	 is small, effects at the boundary will become prominent. If
the ratio becomes large, boundary layer effects can be neglected.
In columns with varying porosity, this ratio will also vary and it
becomes more difficult to predict the size of the boundary layer.

The term �(r) in Eq. (18) will account for the charge distribution
in the column itself due to the charge on the column walls. This will
be modeled using the Poisson–Boltzmann equation

∇2 (r)
�

= −�(r)
εw

(20)



Download	English	Version:

https://daneshyari.com/en/article/1207502

Download	Persian	Version:

https://daneshyari.com/article/1207502

Daneshyari.com

https://daneshyari.com/en/article/1207502
https://daneshyari.com/article/1207502
https://daneshyari.com/

