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The adsorption of a polyclonal IgG mixture on a strong cation exchanger column is characterized using
a detailed multi-component pore model. This model is explicit in all transport parameters and includes
salt dependent isotherms. As discussed in the first part of this work, the IgG mixture can be simplified
by considering two pseudo-variants only. Linear gradient experiments are used to fit the salt depen-
dent adsorption isotherms and the mass transport parameters for the two pseudo-variants. Using the
model, breakthrough curves are predicted with good accuracy. The model is also implemented to visual-
ize the axial and radial concentration profiles of the two pseudo-variants in the column during a loading
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1. Introduction

In Part I of this work [1], the adsorption of the polyclonal anti-
body (PAb) mixture on a strong cation exchanger column was
discussed. The adsorption isotherm and mass transport parameters
have been estimated using a suitable combination of experi-
ments, namely pulse injections under non-adsorbing conditions,
linear gradient elutions and frontal analysis. In particular, short-
cut methods have been used to estimate the important fluid-
and thermodynamic parameters, such as the measurement of the
HETP values to estimate the transport coefficients or the use of
the Yamamoto method to estimate the adsorption isotherm under
diluted conditions. It was found that the pore accessibility of the
PAD is very small (only 28% of the total particle volume) and, as a
consequence, the mass transport inside the particle pores is very
hindered. In addition to this, the isotherm was found to be a strong
function of the ionic strength, which made it estimation paricularly
difficult.

The previous analysis has revealed the complex behavior of the
PAb mixture in conventional cation exchange supports. Short-cut
methods can be hardly used to estimate all the physicochemical
parameters involved in the process. In fact, the nature of the adsorp-
tion isotherm and the severe mass transport limitations are making
the system extremely sensitive to small errors in the parameters,
so that their use in a numerical model would lead to largely inaccu-
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rate model forecasts. For this reason, it is often preferable to directly
regress the parameters using the numerical model.

Two main approaches can be found in the literature to carry out
the regression of the parameters needed to simulate the behavior
of a chromatographic column: regression of batch uptake exper-
iments or regression of elution profiles. In the first approach, the
isotherm is determined directly from batch adsorption data and the
mass transport is found by regressing protein uptake experiments.
This approach has been widely used for the adsorption of proteins
on ion exchanger materials [2-11]. Another option for the deter-
mination of the mass transport parameters is to use microscopic
techniques to visualize the protein front moving to the center of
the particles as the adsorption takes place. This can be done either
by confocal microscopy [12-14] or by light microscopy [15]. How-
ever, these so called “off-line” methods have the disadvantage of
measuring the adsorption parameters in a different fluid dynamic
environment than that of the chromatographic column. For exam-
ple effects like packing compression by the solvent flow, happening
in a chromatographic column, can not be seen by the “off-line”
methods. These effect can become very important for systems that
are very sensible to pore diffusion. This limitation can be avoided
when using the so called “on-line” methods. Here the isotherm and
the mass transport parameters are found by regression of elution
profiles. This method has also been widely used for the adsorption
of proteins on ion-exchange columns [16-21].

For the simulation of the adsorption of large molecules like
proteins, a very comprehensive model is needed. The most com-
plete model present in literature is the so-called general rate model
(GRM), where the concentration distribution of the different solutes
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in both the axial and the particle radial directions is accounted
for [22]. Due to its complexity and the large number of differen-
tial equations involved, this model has gained importance in the
last years due to the strong increase of computational power of
the modern computers. It must be pointed out that the use of this
model is mandatory in the presence of dominant mass transport
resistances, as discussed by Kaczmarski and Antos [23].

In this work, the parameter regression of the elution profiles
is applied for a complete characterization (i.e. under diluted and
overloaded conditions) of the adsorption of a polyclonal IgG on a
preparative strong cation exchanger column. Note that the aim of
this work is not only to estimate the relevant parameters to run
the model simulation, but to use the model as a tool for the under-
standing of the adsorption process. As it will be discussed in the
following, through the model only it is possible to capture the full
complexity of the system and the behaviors observed in the first
part of this work. The use of mathematical modelling is also essen-
tial for process design and optimization. This has become especially
important after the launch of the PAT initiative [24] by the FDA.

As described in Part I of this work, although the original poly-
clonal antibody mixture is made by a very large number of different
antibodies, it can be approximated by considering only two so-
called pseudo-variants, which in the following will be considered as
single components. In order to simplify the regression procedure,
the experiments were designed in such a way that as few parameter
as possible are fitted together. The rationale behind the proposed
regression procedure will be discussed in this work.

2. Model development

The preparative separation of large molecules like proteins
involve complex adsorption mechanism and slow mass transfer
[22]. In order to achieve an accurate prediction of the elution pro-
file a complete model is needed, which includes all contributions
to the mass transport in the chromatographic column. The GRM
is accounting for the concentration changes along the column axis
and the particle radius. In this regard, the following assumptions
are made:

e transport is taking place by convection and diffusion in the mobile
phase, i.e. in the inter-particle voids; transport is purely by diffu-
sion in the intra-particle voids, the so-called stagnant phase;

e packing is uniform. Therefore, all porosities are constant;

e there is no concentration gradient along the column radius;

e particles have spherical symmetry;

e transport inside the particle is due to diffusion in the liquid phase
only. Solid diffusion is not accounted for;

e the adsorption processis always at equilibrium. Adsorption kinet-
ics is neglected.

Considering the previous set of assumption, a model consisting
of two sets of mass balance equations, for the mobile and stagnant
liquid phase, respectively, can be written. It is oft convenient to
write the equations in dimensionless form. The mass balance for
the i-th component in the mobile phase is
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where ¢; is the concentration of the i-th component, T = (tu;,.)/L is
the dimensionless time, 1 = z/L the dimensionless axial position,
&p,; the particle porosity accessible to the component i, ¢, is the
column bed porosity, St; is the Stanton number of component i,
Cp,i(p = 1) the concentration of the i-th component at the particle
surface and Peg, ; the axial Peclet number of component i.

The corresponding mass balance for the stagnant liquid in the
particle pores can be written as
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where ¢, ; is the pore concentration of the i-th component, g; the
corresponding concentration in the solid phase, Pe; the Peclet num-
ber of componentiand p = r/Rp is the dimensionless radial position
. Note that according to the previous definition, T = 1 corresponds
to the retention time of a tracer totally excluded from the pores.
The dimensionless numbers are defined as

Axial Peclet number:
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where tay, teonv, tpore and tgy, are the characteristic times for axial
diffusion, convection, pore diffusion and film mass transfer, respec-
tively.

The initial and boundary conditions for the mass balance equa-
tions in the mobile (Eq. (1)) and in the stagnant (Eq. (2)) phases can
be then written as [25]
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For Eq. (2) the initial and boundary conditions become:
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For the salt, the same lumped mass balance equation as shown
by Melter et al. [29] has been used in this work.

Due to its complexity, the general rate model has no analytical
solution. Numerical methods have to be applied. In this work the
finite difference method is used to solve the original system of par-
tial differential equations. This method consist in transforming the
space derivatives in difference equations over a small discretiza-
tion interval [26,27]. The interval is achieved discretizing the space
(radial and axial) coordinate. In this work, 9 grid points along the
particle radius and 99 along the column axis are used. The final
system of equations (ODEs) then consists of 9x99 ordinary differ-
ential equations per solute. The numerical code has been written
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