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Abstract

This paper describes fundamentals and applications of multivariate statistical techniques for the optimization of chromatographic systems.
The surface response methodologies: central composite design, Doehlert matrix and Box–Behnken design are discussed and applications of
these techniques for optimization of sample preparation steps (extractions) and determination of experimental conditions for chromatographic
separations are presented. The use of mixture design for optimization of mobile phases is also related. An optimization example involving a real
separation process is exhaustively described. A discussion about model validation is presented. Some applications of other multivariate techniques
for optimization of chromatographic methods are also summarized.
© 2007 Elsevier B.V. All rights reserved.

Keywords: Review; Multivariate techniques; Doehlert matrix; Box–Benhken design; Central composite design; Chromatographic methods; Optimization

Contents

1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2. Factorial and central composite designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1. Application of central composite designs for optimization of chromatographic systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3. Box–Behnken designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1. Application of Box–Behnken designs for optimization of chromatographic methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4. Doehlert designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.1. Application of Doehlert design for optimization of chromatographic systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5. Mixture designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5.1. Model validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.2. Optimization example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.3. Application of mixture design for optimization of chromatographic methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

6. Other experimental designs used for the optimization of chromatographic methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
7. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

∗ Corresponding author. Tel.: +55 71 9117 8046; fax: +55 71 3235 5166.
E-mail address: slcf@ufba.br (S.L.C. Ferreira).

0021-9673/$ – see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.chroma.2007.03.051

mailto:slcf@ufba.br
dx.doi.org/10.1016/j.chroma.2007.03.051


S.L.C. Ferreira et al. / J. Chromatogr. A 1158 (2007) 2–14 3

1. Introduction

Chromatographic analysis usually involves three steps:
sample preparation, compound separation and compound quan-
tification. Of these, the steps of sample preparation and
compound separation have been frequently optimized employ-
ing multivariate statistical techniques.

The multivariate statistical methods most used in chromatog-
raphy and indeed in chemistry in general can be conveniently
classified according to how one decides which experiments are
to be executed. All methods require the user to supply minimum
and maximum values for each factor that defines the experimen-
tal domain to be investigated during the optimization procedure.
The combinations of the different factor levels used to perform
the actual experiments are then decided by which multivariate
technique is employed.

The most commonly used designs to determine response
surfaces are the full and fractional factorial designs and the
more complex central composite, Box–Behnken, Doehlert and
mixture designs. Although the factorial designs can be used to
determine simple response surfaces that are linear in all of the
investigated factors, they are normally used to determine which
experimental factors are the most important to investigate and
which factors do not significantly affect the experimental results.
Here their use is discussed as a first stage in a multivariate inves-
tigation where a linear response surface is determined. For a
two-factor case, the response surface is given by the linear model

ŷ = b0 + b1x1 + b2x2 + b12x1x2 (1)

If the interaction term is negligible the response surface is
planar. The more important the interaction term, the greater is
the degree of twisting the planar response surface experiences.
If the linear model is not sufficient to represent the experimental
data adequately, more experiments can be performed in addition
to those of factorial design. The central composite design is often
formed in this way and its results can be used to determine a
quadratic response surface

ŷ = b0 + b1x1 + b2x2 + b11x
2
1 + b22x

2
2 + b12x1x2 (2)

that has curvature and can be used to predict factor lev-
els that produce maximum or minimum response values.
The Box–Behnken and Doehlert designs can also be used to
determine these kinds of response surfaces and optimize chro-
matographic factors such as temperature, column characteristics
and flow rates. Mixture designs are used to vary proportions of
mixture ingredients such as the solvent proportions of a mobile
phase. They differ from the other designs that optimize inten-
sive properties like temperature or extensive ones like the total
quantity of material used in an experiment.

Rather than executing experiments that have been planned
according to a statistical design, optimization can be done by per-
forming experiments that are indicated by a sequential simplex.
The sequential simplex can be useful in certain situations, such
as instrument optimization when one is only trying to improve
a single response and the experiments are very fast. The sim-
plex algorithm even permits automatic optimization that does

not necessarily require user intervention. However, most prob-
lems in chromatography have multiple responses that need to
be simultaneously optimized, like the retention factors of vari-
ous chromatographic peaks for which a single response function
is inadequate. In this case the simplex procedure is not very
efficient.

One big advantage of applying the simplex procedure is that
the user does not have to understand even basic statistics to do a
successful optimization. No decision-making is necessary. After
feeding initial factor levels and their proposed changes into the
computer, the user simply performs experiments at the factor
levels indicated by the simplex algorithm. Three different algo-
rithms can be applied, the basic simplex, the modified simplex
and the super-modified simplex. Our aim here is to discuss those
methods that are generally more applicable in chromatography.
For this reason the interested reader is referred to specialized
sequential simplex publications [1–4].

Multivariate optimization of chromatographic systems can
be carried out using the following procedure

(i) Choose a statistical design to investigate the experimental
region of interest.

(ii) Perform the experiments in random chronological order.
(iii) Perform analysis of variance (ANOVA) on the regression

results so that the most appropriate model with no evidence
of lack of fit can be used to represent the data. Validation
is often not reported in response surface applications even
though it is necessary for knowing whether the system is
really optimized or not.

Modern commercial statistical computer programs are avail-
able to help the research worker carry out each of these steps. A
wide variety of designs are presented to the researcher for selec-
tion. Options are available for determining the random order
for experiment execution. The programs also allow the user to
select the models, linear, quadratic and others, he would like to
test. After calculating the model coefficients and their standard
errors an ANOVA is available to the user to verify the quality of
model fit to the data so the researcher can choose the best model
to represent the data.

In this section, the experimental designs most frequently used
in chemistry for response surface determination are described so
the reader can have a basis for choosing designs for his appli-
cations. Random execution of experiments is recommended so
that an accurate estimation of experimental error is obtained.
The regression step does not require user intervention so it is
not described here and the reader is referred to basic sources on
the subject [5–8] to learn how the computer carries out the cal-
culation. Then the validation of tentative models using ANOVA
is detailed since this task requires a decision on the part of the
researcher about which models are adequate to represent the data
and which models should be rejected because they suffer from
significant lack-of-fit to the data.

The principal chemometric tools used for optimization of
chromatographic systems are: two-level full factorial, central
composite, Box–Behnken, Doehlert and mixture designs [9,10].
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