
Journal of Chromatography A, 1158 (2007) 258–272

Towards unsupervised analysis of second-order chromatographic data:
Automated selection of number of components

in multivariate curve-resolution methods
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Abstract

A method to apply multivariate curve-resolution unattendedly is presented. The algorithm is suitable to perform deconvolution of two-way data
(e.g. retrieving the individual elution profiles and spectra of co-eluting compounds from signals obtained from a chromatograph equipped with
multiple-channel detection: LC–DAD or GC–MS). The method is especially adequate to achieve the advantages of deconvolution approaches when
huge amounts of data are present and manual application of multivariate techniques is too time-consuming. The philosophy of the algorithm is to
mimic the reactions of an expert user when applying the orthogonal projection approach—multivariate curve-resolution techniques. Basically, the
method establishes a way to check the number of significant components in the data matrix. The performance of the method was superior to the
Malinowski F-test. The algorithm was tested with HPLC–DAD signals.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The emergence of hyphenated chromatography systems (e.g.
HPLC-diode-array-UV, GC–MS) and of comprehensive two-
dimensional separation methods (e.g. LC × LC, GC × GC) has
multiplied the sheer amounts of data produced in the labora-
tory. The task of interpreting these enormous heaps of data, so
as to generate meaningful information, requires powerful data-
analysis tools. During several decades chemometricians have
been occupied by developing algorithms for this purpose—and
they still are. In most cases the signal associated with each
specific compound must be identified and extracted from the
entire data set. The most popular family of techniques in this
context involves multivariate curve-resolution. With these tech-
niques, the separation of the contributions of the interferences
from those of the analytes is theoretically possible when the
analytical technique does not provide complete selectivity. In
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other words, chemometrics can complement the imperfect sig-
nal separation achieved by chemical methods. The capability
of retrieving the analyte signal in the presence of interferences
that are accounted for during the calibration has been called the
first-order advantage. The second-order advantage refers to the
possibility of correctly determining an analyte in the presence
of interferences that were not accounted for [1].

The application of multivariate methods to large, complex
datasets is, however, difficult, because it requires too much
user interaction and supervision. Multivariate methods can only
be applied locally to small parts of the dataset. In hyphenated
chromatographic techniques, this implies applying multivariate
curve-resolution within a small time window, and to then move
this along the entire chromatogram. Such a procedure, which
implies a (large) number of consecutive applications of multi-
variate techniques, should be fully automated to be practical.
Asking for user intervention each time a multivariate technique
is (locally) applied dramatically decreases their usefulness in the
work-flow. The greater the amounts of data, the greater the need
for automation. Biosystems data analysis (i.e. “omics”) consti-
tutes one example in which automation is absolutely necessary,
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G. Vivó-Truyols et al. / J. Chromatogr. A 1158 (2007) 258–272 259

because the ambition is to detect (and, if possible, to quantify)
all components in the sample. This particular area constitutes
one of the targets of the present study. When the number of
sample components is overwhelming, unsupervised multivariate
curve-resolution can be the answer.

In the present context, automation is meant to imply avoid-
ing user interaction each time the multivariate technique is
applied locally (to a limited data region). This is not an easy
task, as it involves actions at different levels. For instance, at
the data pre-processing level corrections for base-line distor-
tions are hard to automate. Yet, the result critically affects the
subsequent multivariate analysis. If the base-line correction is
imperfect, the multivariate analysis will yield biased results.
Another task that is hard to automate is accounting for small
shifts in retention times, when data arising from more than one
chromatographic run (e.g. samples and calibrants) are processed
together. This necessitates a so-called chromatogram-alignment
step. One way to circumvent this problem is to apply multivariate
curve-resolution methods independently to each chromatogram.
Because data pre-processing becomes simpler, this approach is
preferred in the present study. Another step that demands user
intervention is the validation step. Normally, the user inspects the
results of the multivariate technique in a particular local region.
A decision is taken to decide whether they are satisfactory, nor-
mally based on a visual inspection of the residuals.

Multivariate curve-resolution methods have proven success-
ful for the deconvolution of (partially overlapping) components
of a mixture analysed by second-order instruments [2]. One of
the most popular multivariate curve-resolution methods is the
so-called orthogonal projection approach in combination with
alternating least squares (OPA–ALS) [3]. Alternatives to OPA
– with common features – can be found in the literature (e.g.
SIMPLISMA [4] or Evolving Factor Analysis [5]). It is not the
purpose of this work to compare all these methods, but to auto-
mate the most flexible one. We have selected OPA–ALS as the
core of our approach to the automatic processing of two-way sig-
nals. It has been demonstrated [6] that the OPA method, when
compared to other methods, performs quite satisfactory in sit-
uations of strong overlap. OPA is, however, normally a highly
interactive process. It requires experienced users and the com-
plete analysis of large complex data sets is barely feasible. Even
more problematic is the fact that human intervention introduces
some variations from person to person, making the final results
poorly reproducible.

One main step that requires user intervention in OPA–ALS is
the selection of initial spectra estimates via OPA analysis prior to
submit to ALS. In the OPA method, the user determines sequen-
tially the significant spectra under the signal, so the number
of co-eluting species is collaterally obtained. This implies the
manual selection of the number of compounds that contribute to
the signal matrix. Theoretically, the number of co-eluting com-
pounds in a data matrix (i.e. the pseudo-rank) can be computed in
several ways [7,8]. The most usual approach is the Malinowski
F-test [9]. However, one of the premises for applying this test is
that the instrument noise should be uncorrelated [10,11], which
is difficult to meet in practice. In a recent report [12], noise
autocorrelation for different instruments was studied in order to

optimise Savitzky–Golay filters. All instruments tested yielded
autocorrelated noise. This decreases the potential applicability
of the Malinowski test.

A study aimed at decreasing the extent of human interaction
in selecting the number of components and the initial estimates
(i.e. spectra) in the OPA method was reported by Gourvénec et
al. [13]. The matrix pseudo-rank was estimated by examining the
pattern found in the dissimilarity vector with increasing number
of components, using the Durbin–Watson (DW) test. We have
found, however, that this test yields correct results only if the
instrument noise is uncorrelated. The approach thus suffers from
the same limitations as the Malinowski test.

A more general solution is provided in the present work for
instruments producing autocorrelated noise. The noise autocor-
relation of the instrument is inspected and this information is
used in a second step to analyse the noise pattern of the dis-
similarity. The method can be used unattended as many times
as needed, provided that the noise autocorrelation of the instru-
ment remains constant (a reasonable assumption for common
instruments). The proposed method gives similar results as the
Malinowski test in case of uncorrelated (white) noise and per-
forms better with autocorrelated (coloured) noise. Thus, for most
analytical instruments the gain in accuracy is manifest.

2. Theory

2.1. General description of orthogonal projection
approach–alternating least squares

As mentioned in Section 1, the OPA–ALS method was
selected for automation in this work. The purpose of this section
is not to explain the algorithms in detail. We will only give a
general overview, which is necessary for the next sections. For
more details see ref. [14]. In order to introduce the approaches, an
example was taken from high-performance liquid chromatogra-
phy with diode-array UV detection (HPLC–DAD), in which two
compounds co-elute. The approach is not restricted to this type
of experiment. OPA–ALS can in principle be applied to separate
the individual contributions to any kind of second-order signal,
provided they are bilinear [2].

Let us define Y as the matrix corresponding to the experimen-
tal signal of an HPLC–DAD injection containing nc co-eluting
compounds that exhibit different spectra. If the signal was
measured at nt retention times, and the spectra contain nw wave-
lengths, Y will have the dimensions nt × nw. If bilinearity holds,
Y can be decomposed as follows:

Y = PD + � (1)

where P (nt × nc) is the elution profile matrix, with the signal
of each compound arranged in each column, D (nc × nw) the
spectra matrix, which contains a spectrum of one compound in
each row and � represents the noise. In our example, since only
two compounds are present, P has the dimensions nt × 2 and
contains the HPLC peak profiles of the two compounds, and D
has the dimensions 2 × nw and contains the respective spectra.
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