Contents lists available at [ScienceDirect](http://www.elsevier.com/locate/na)

Nonlinear Analysis

www.elsevier.com/locate/na

Extensions of a result by G. Talenti to (p,q)-Laplace equations

A B S T R A C T

Behrouz Em[a](#page-0-0)mizadeh^a, Yichen Liu^{[b](#page-0-1)}, Giovanni Porru^{[c](#page-0-2),*}

^a *School of Mathematical Sciences, The University of Nottingham, Ningbo, China*

^b *Department of Mathematical Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China*

^c *Department of Mathematics and Informatics, University of Cagliari, Italy*

A R T I C L E I N F O

Article history: Received 24 May 2018 Accepted 10 September 2018 Communicated by Enzo Mitidieri

MSC: 35J25 49K20 49K30 *Keywords:* (p,q)-Laplacian Symmetrization Comparison results

1. Introduction

An inequality attributed to Giorgio Talenti [[11\]](#page--1-0) has been a masterpiece in partial differential equation. Its physical and mathematical implications are profound. The original description of this inequality is here reviewed for the convenience of the reader. Let $u \in H_0^1(\Omega)$ be the solution to the boundary value problem

$$
-\sum_{i,j=1}^{n} \frac{\partial}{\partial x_i} \left(a_{ij}(x) \frac{\partial u}{\partial x_j} \right) + c(x)u = f(x) \text{ in } \Omega, \ u = 0 \text{ on } \partial \Omega,
$$
 (1)

We prove a comparison result for solutions to (p,q) -Laplace equation via Schwarz symmetrization. For the p-Laplace equation, the corresponding result is due to Giorgio Talenti. In a special (radial) case we also prove a reverse comparison result.

where $a_{ij}(x)$, $c(x)$ are measurable functions satisfying

$$
\sum_{i,j=1}^{n} a_{ij}(x)\xi_i\xi_j \ge \sum_{i=1}^{n} \xi_i^2, \quad c(x) \ge 0,
$$

and $f \in L^{\infty}_{+}(\Omega)$. Henceforth, $\Omega \subset \mathbb{R}^{n}$ is a bounded domain.

Corresponding author.

<https://doi.org/10.1016/j.na.2018.09.005> 0362-546X/© 2018 Published by Elsevier Ltd.

©2018 Published by Elsevier Ltd.

E-mail addresses: Behrouz.Emamizadeh@nottingham.edu.cn (B. Emamizadeh), Yichen.Liu01@xjtlu.edu.cn (Y. Liu), porru@unica.it (G. Porru).

On the other hand, let $v \in H_0^1(B)$ be the solution to the following Poisson boundary value problem:

$$
-\Delta v = f^{\sharp}(x) \text{ in } B, v = 0 \text{ on } \partial B,
$$
\n
$$
(2)
$$

where *B* is the ball in \mathbb{R}^n centered at the origin and such that $|B| = |\Omega|$ (the radius *R* of *B* is $(|\Omega|/\omega_n)^{1/n}$, where ω_n stands for the measure of the n-dimensional unit ball). The notation f^{\sharp} stands for the Schwarz symmetrization of *f*. In other words, $f^{\sharp}(x) = f^*(\omega_n|x|^n)$, where f^* denotes the essentially unique decreasing rearrangement of *f* defined on the interval $[0, |\Omega|]$. The Talenti inequality follows:

$$
u^{\sharp}(x) \le v(x) \quad \text{for almost every} \quad x \in B. \tag{3}
$$

Some immediate consequences of ([3\)](#page-1-0) are summarized below.

 (i) ess sup $\Omega u(x) \leq \text{ess sup}_{B}v(x)$,

(ii) $\int_{\Omega} u^r dx \le \int_{B} v^r dx$, $1 \le r < \infty$ (norm estimate),

 $\int_{\Omega} \sum_{i,j=1}^{n} a_{ij}(x) u_{x_i} u_{x_j} dx \le \int_{B} |\nabla v|^2 dx$ (energy estimate).

The most common version of Talenti's inequality corresponds to the case when $a_{ij}(x) = \delta_{ij}$, and the potential function $c(x)$ is identically zero. Under these conditions, problem ([1\)](#page-0-4) reduces to a Poisson problem:

$$
-\Delta u = f(x) \text{ in } \Omega, \quad u = 0 \text{ on } \partial \Omega. \tag{4}
$$

In this case, when $n = 2$, [\(3](#page-1-0)) can be interpreted physically as follows. An elastic membrane occupying the (horizontal) region Ω , fixed at the boundary $\partial\Omega$, and subject to a vertical force $f(x)$ is displaced from the rest position. The amount of displacement is denoted by *u*, the solution to [\(4](#page-1-1)). In this setting, the Talenti inequality (3) (3) , guarantees that a circular membrane having the same area as that of Ω , and subject to a radial vertical force but equi-measurable with $f(x)$ will have the largest displacement. Applications of Talenti's inequality in the literature are overwhelming, the reader is suggested to refer to a recent survey [[12\]](#page--1-1), and the numerous references therein for a thorough treatment.

In the present paper, we prove an extension of Talenti's inequality ([3\)](#page-1-0). The precise description of the problem of interest is as follows. Consider the boundary value problem

$$
-\Delta_p u - \Delta_q u = f(x)h(u), \quad u > 0 \quad \text{in} \quad \Omega, \quad u = 0 \quad \text{on} \quad \partial\Omega,\tag{5}
$$

where $1 < q < p$, $f(x)$ is a non-negative bounded function, and $h : (0, \infty) \to (0, \infty)$ satisfies the conditions: $(H1)$ *h*(*t*) is a non-decreasing function,

(H2) $h(t)t^{1-\alpha}$ is non-increasing for some α such that $1 \leq \alpha < q$.

The operator Δ_p (similarly Δ_q) denotes the usual p-Laplacian i.e. $\Delta_p u = \nabla \cdot (|\nabla u|^{p-2} \nabla u)$. Our first result is the following.

Theorem 1.1. *Let u be the unique positive solution to* ([5\)](#page-1-2)*. Suppose v is the solution to*

$$
-\Delta_p v - \Delta_q v = f^{\sharp}(x)h(v), \quad v > 0 \quad \text{in} \quad B, \quad v = 0 \quad \text{on} \quad \partial B,
$$
\n
$$
(6)
$$

where B is the ball centered at the origin with radius $R = (|\Omega|/\omega_n)^{1/n}$. Then

$$
u^{\sharp}(x) \le v(x)
$$
 for almost every $x \in B$.

The proof of the above theorem relies on a comparison result (see [Proposition](#page--1-2) [2.1\)](#page--1-2) which is itself of interest. Indeed, it is this comparison result which guarantees the solution to problem (5) (5) to be unique, whereas the existence of a positive solution follows from standard variational arguments (note that, thanks to condition (H2), the associated energy integral is coercive).

Download English Version:

<https://daneshyari.com/en/article/12121871>

Download Persian Version:

<https://daneshyari.com/article/12121871>

[Daneshyari.com](https://daneshyari.com)