Contents lists available at ScienceDirect

Nonlinear Analysis

www.elsevier.com/locate/na

Extensions of a result by G. Talenti to (p,q)-Laplace equations

ABSTRACT

Behrouz Emamizadeh^a, Yichen Liu^b, Giovanni Porru^{c,*}

^a School of Mathematical Sciences, The University of Nottingham, Ningbo, China

^b Department of Mathematical Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China

^c Department of Mathematics and Informatics, University of Cagliari, Italy

ARTICLE INFO

Article history: Received 24 May 2018 Accepted 10 September 2018 Communicated by Enzo Mitidieri

MSC: 35J25 49K20 49K30 Keywords: (p,q)-Laplacian Symmetrization Comparison results

1. Introduction

An inequality attributed to Giorgio Talenti [11] has been a masterpiece in partial differential equation. Its physical and mathematical implications are profound. The original description of this inequality is here reviewed for the convenience of the reader. Let $u \in H_0^1(\Omega)$ be the solution to the boundary value problem

$$-\sum_{i,j=1}^{n} \frac{\partial}{\partial x_i} \left(a_{ij}(x) \frac{\partial u}{\partial x_j} \right) + c(x)u = f(x) \quad \text{in} \quad \Omega, \quad u = 0 \quad \text{on} \quad \partial\Omega, \tag{1}$$

We prove a comparison result for solutions to (p,q)-Laplace equation via Schwarz

symmetrization. For the p-Laplace equation, the corresponding result is due to

Giorgio Talenti. In a special (radial) case we also prove a reverse comparison result.

where $a_{ij}(x)$, c(x) are measurable functions satisfying

$$\sum_{i,j=1}^{n} a_{ij}(x)\xi_i\xi_j \ge \sum_{i=1}^{n} \xi_i^2, \quad c(x) \ge 0,$$

and $f \in L^{\infty}_{+}(\Omega)$. Henceforth, $\Omega \subset \mathbb{R}^{n}$ is a bounded domain.

* Corresponding author.

E-mail addresses: Behrouz.Emamizadeh@nottingham.edu.cn (B. Emamizadeh), Yichen.Liu01@xjtlu.edu.cn (Y. Liu), porru@unica.it (G. Porru).

https://doi.org/10.1016/j.na.2018.09.005 $0362\text{-}546\mathrm{X}/\odot$ 2018 Published by Elsevier Ltd.

Extensions of a result

Check for updates

© 2018 Published by Elsevier Ltd.

On the other hand, let $v \in H_0^1(B)$ be the solution to the following Poisson boundary value problem:

$$-\Delta v = f^{\sharp}(x) \quad \text{in } B, \quad v = 0 \quad \text{on } \partial B, \tag{2}$$

where B is the ball in \mathbb{R}^n centered at the origin and such that $|B| = |\Omega|$ (the radius R of B is $(|\Omega|/\omega_n)^{1/n}$, where ω_n stands for the measure of the n-dimensional unit ball). The notation f^{\sharp} stands for the Schwarz symmetrization of f. In other words, $f^{\sharp}(x) = f^*(\omega_n |x|^n)$, where f^* denotes the essentially unique decreasing rearrangement of f defined on the interval $[0, |\Omega|]$. The Talenti inequality follows:

$$u^{\sharp}(x) \le v(x)$$
 for almost every $x \in B$. (3)

Some immediate consequences of (3) are summarized below.

(i) ess $\sup_{\Omega} u(x) \leq \operatorname{ess} \sup_{B} v(x)$,

(ii) $\int_{\Omega} u^r dx \leq \int_{B} v^r dx$, $1 \leq r < \infty$ (norm estimate),

(iii) $\int_{\Omega} \sum_{i,j=1}^{n} a_{ij}(x) u_{x_i} u_{x_j} dx \leq \int_{B} |\nabla v|^2 dx$ (energy estimate).

The most common version of Talenti's inequality corresponds to the case when $a_{ij}(x) = \delta_{ij}$, and the potential function c(x) is identically zero. Under these conditions, problem (1) reduces to a Poisson problem:

$$-\Delta u = f(x)$$
 in Ω , $u = 0$ on $\partial \Omega$. (4)

In this case, when n = 2, (3) can be interpreted physically as follows. An elastic membrane occupying the (horizontal) region Ω , fixed at the boundary $\partial \Omega$, and subject to a vertical force f(x) is displaced from the rest position. The amount of displacement is denoted by u, the solution to (4). In this setting, the Talenti inequality (3), guarantees that a circular membrane having the same area as that of Ω , and subject to a radial vertical force but equi-measurable with f(x) will have the largest displacement. Applications of Talenti's inequality in the literature are overwhelming, the reader is suggested to refer to a recent survey [12], and the numerous references therein for a thorough treatment.

In the present paper, we prove an extension of Talenti's inequality (3). The precise description of the problem of interest is as follows. Consider the boundary value problem

$$-\Delta_p u - \Delta_q u = f(x)h(u), \quad u > 0 \quad \text{in} \quad \Omega, \quad u = 0 \quad \text{on} \quad \partial\Omega, \tag{5}$$

where 1 < q < p, f(x) is a non-negative bounded function, and $h: (0, \infty) \to (0, \infty)$ satisfies the conditions: (H1) h(t) is a non-decreasing function,

(H2) $h(t)t^{1-\alpha}$ is non-increasing for some α such that $1 \leq \alpha < q$.

The operator Δ_p (similarly Δ_q) denotes the usual p-Laplacian i.e. $\Delta_p u = \nabla \cdot (|\nabla u|^{p-2} \nabla u)$. Our first result is the following.

Theorem 1.1. Let u be the unique positive solution to (5). Suppose v is the solution to

$$-\Delta_p v - \Delta_q v = f^{\sharp}(x)h(v), \quad v > 0 \quad in \quad B, \quad v = 0 \quad on \quad \partial B, \tag{6}$$

where B is the ball centered at the origin with radius $R = (|\Omega|/\omega_n)^{1/n}$. Then

$$u^{\sharp}(x) \leq v(x)$$
 for almost every $x \in B$.

The proof of the above theorem relies on a comparison result (see Proposition 2.1) which is itself of interest. Indeed, it is this comparison result which guarantees the solution to problem (5) to be unique, whereas the existence of a positive solution follows from standard variational arguments (note that, thanks to condition (H2), the associated energy integral is coercive).

Download English Version:

https://daneshyari.com/en/article/12121871

Download Persian Version:

https://daneshyari.com/article/12121871

Daneshyari.com